The Light Field Raindrop Removal (LFRR) aims to restore the background areas obscured by raindrops in the Light Field (LF). Compared with single image, the LF provides more abundant information by regularly and densely sampling the scene. Since raindrops have larger disparities than the background in the LF, the majority of texture details occluded by raindrops are visible in other views. In this paper, we propose a novel LFRR network by directly utilizing the complementary pixel information of raindrop-free areas in the input raindrop LF, which consists of the re-sampling module and the refinement module. Specifically, the re-sampling module generates a new LF which is less polluted by raindrops through re-sampling position predictions and the proposed 4D interpolation. The refinement module improves the restoration of the completely occluded background areas and corrects the pixel error caused by 4D interpolation. Furthermore, we carefully build the first real scene LFRR dataset for model training and validation. Experiments demonstrate that the proposed method can effectively remove raindrops and achieves state-of-the-art performance in both background restoration and view consistency maintenance.
翻译:浅雨滴除去( LFR ) 旨在恢复在光场( LF) 中被雨滴遮蔽的背景区域。 与单一图像相比, LF 提供更丰富的信息, 定期和密集地取样现场。 由于雨滴的差别大于LF 的背景, 大部分由雨滴隐蔽的纹理细节在其他观点中可见。 在本文中, 我们提议建立一个新型 LFR 网络, 直接利用输入的雨滴( LF) 中无雨滴地区的补充像素信息, 包括再取样模块和精细化模块。 具体地说, 重新采样模块产生一个新的LF, 由重新取样位置预测和提议的4D 内推法的雨滴污染较少。 改进模块改善了完全隐蔽的背景区域的恢复, 并纠正了由 4D 内推法造成的像素错误。 此外, 我们仔细建立第一个真实的 LFRR 数据集, 用于模型的培训和校验。 实验表明, 拟议的方法能够有效地清除雨滴, 并实现背景恢复状态。