Recent research in novelty detection focuses mainly on document-level classification, employing deep neural networks (DNN). However, the black-box nature of DNNs makes it difficult to extract an exact explanation of why a document is considered novel. In addition, dealing with novelty at the word-level is crucial to provide a more fine-grained analysis than what is available at the document level. In this work, we propose a Tsetlin machine (TM)-based architecture for scoring individual words according to their contribution to novelty. Our approach encodes a description of the novel documents using the linguistic patterns captured by TM clauses. We then adopt this description to measure how much a word contributes to making documents novel. Our experimental results demonstrate how our approach breaks down novelty into interpretable phrases, successfully measuring novelty.


翻译:最近的新发现研究主要侧重于文件级分类,使用深层神经网络(DNN)。然而,DNN的黑箱性质使得很难准确解释为什么认为文件是新奇的。此外,在字级处理新颖性对于提供比文件级更精细的分析至关重要。在这项工作中,我们提议基于Tsetlin机器(TM)的架构,根据其对新颖性的贡献来评分单词。我们的方法用TM条款所捕捉的语言模式对新书文件的描述进行编码。我们随后采用这一描述来衡量一个单词对文件的创作贡献。我们的实验结果表明我们的方法是如何将新写成可解释的词,成功地测量新书。

0
下载
关闭预览

相关内容

【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【文本匹配】Question Answering论文
深度学习自然语言处理
8+阅读 · 2020年4月20日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Arxiv
16+阅读 · 2020年5月20日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Knowledge Based Machine Reading Comprehension
Arxiv
4+阅读 · 2018年9月12日
Arxiv
3+阅读 · 2018年3月28日
Arxiv
3+阅读 · 2017年12月23日
VIP会员
相关VIP内容
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
【文本匹配】Question Answering论文
深度学习自然语言处理
8+阅读 · 2020年4月20日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员