The general linear model (GLM) is a widely popular and convenient tool for estimating the functional brain response and identifying areas of significant activation during a task or stimulus. However, the classical GLM is based on a massive univariate approach that does not explicitly leverage the similarity of activation patterns among neighboring brain locations. As a result, it tends to produce noisy estimates and be underpowered to detect significant activations, particularly in individual subjects and small groups. A recent alternative, a cortical surface-based spatial Bayesian GLM, leverages spatial dependencies among neighboring cortical vertices to produce more accurate estimates and areas of functional activation. The spatial Bayesian GLM can be applied to individual and group-level analysis. In this study, we assess the reliability and power of individual and group-average measures of task activation produced via the surface-based spatial Bayesian GLM. We analyze motor task data from 45 subjects in the Human Connectome Project (HCP) and HCP Retest datasets. We also extend the model to multi-run analysis and employ subject-specific cortical surfaces rather than surfaces inflated to a sphere for more accurate distance-based modeling. Results show that the surface-based spatial Bayesian GLM produces highly reliable activations in individual subjects and is powerful enough to detect trait-like functional topologies. Additionally, spatial Bayesian modeling enhances reliability of group-level analysis even in moderately sized samples (n=45). The power of the spatial Bayesian GLM to detect activations above a scientifically meaningful effect size is nearly invariant to sample size, exhibiting high power even in small samples (n=10). The spatial Bayesian GLM is computationally efficient in individuals and groups and is convenient to implement with the open-source BayesfMRI R package.


翻译:普通线性模型(GLM)是一个广受欢迎和方便的工具,用于估计大脑功能反应和确定任务或刺激期间显著激活的领域。然而,古典GLM是基于大规模单亚利特方法的,没有明确地利用相邻大脑位置的类似激活模式。结果,它往往产生噪音估计数,而且不足以探测重大激活,特别是在个别对象和小群体中。最近的一个替代方案,即以表面为基础的空间表面为基础的空间平流空间阵列空间阵列空间阵列空间阵列空间阵列空间阵列空间阵列空间阵列空间阵列空间阵列空间阵列空间阵列空间阵列空间阵列空间阵列空间阵列空间阵列空间阵列空间阵列空间阵列空间阵列空间阵列空间阵列空间阵列空间阵列空间阵列空间阵列空间阵列空间阵列空间阵列空间阵列空间阵列空间阵列空间阵列空间阵列空间阵列数据。我们还将模型扩大到多运行式的模型,利用功能性阵列的阵列空间阵列空间阵列空间阵列空间阵列空间阵列空间阵列空间阵列空间阵列空间阵列空间阵列空间阵列空间阵列数据(甚至甚甚甚甚甚甚甚甚甚甚甚甚甚甚甚甚甚甚甚甚甚甚甚甚甚甚甚甚甚甚甚甚甚甚甚高空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空基显示空间阵列空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空测测测数组域数据组进行演示列等等等等等等等等等等等地测,在地测测距距距距距距距测距测距距距距距距测距测距距距距距距测测距测距测距测距测距测距测距测距测距距距距距测距测距测距测距测距测距测距距距测距测距距距距距距距距

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Science 一周论文导读 | 2018 年 11 月 16 日
科研圈
7+阅读 · 2018年11月25日
已删除
将门创投
4+阅读 · 2018年11月20日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年12月25日
Arxiv
0+阅读 · 2021年12月20日
Arxiv
8+阅读 · 2018年11月27日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Science 一周论文导读 | 2018 年 11 月 16 日
科研圈
7+阅读 · 2018年11月25日
已删除
将门创投
4+阅读 · 2018年11月20日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员