The rapid development of aspect-based sentiment analysis (ABSA) within recent decades shows great potential for real-world society. The current ABSA works, however, are mostly limited to the scenario of a single text piece, leaving the study in dialogue contexts unexplored. In this work, we introduce a novel task of conversational aspect-based sentiment quadruple analysis, namely DiaASQ, aiming to detect the sentiment quadruple of \emph{target-aspect-opinion-sentiment} in a dialogue. DiaASQ bridges the gap between fine-grained sentiment analysis and conversational opinion mining. We manually construct a large-scale high-quality DiaASQ dataset in both Chinese and English languages. We deliberately develop a neural model to benchmark the task, which advances in effectively performing end-to-end quadruple prediction, and manages to incorporate rich dialogue-specific and discourse feature representations for better cross-utterance quadruple extraction. We finally point out several potential future works to facilitate the follow-up research of this new task.
翻译:近几十年来,基于方方面面的情绪分析(ABSA)的快速发展显示了现实社会的巨大潜力。但是,目前ABSA的作品大多局限于单一文本片子的情景,使得在对话背景下的研究没有被探索。在这项工作中,我们引入了一个新的基于方方面面的情绪分析任务,即DiaASQ,目的是在对话中检测到\emph{目标-目标-目标-视觉-接受-对话的四重情绪。DiaASQ弥合了微小的情绪分析与对话性见解挖掘之间的差距。我们手工用中文和英文建立了大规模高质量的迪亚萨Q数据集。我们有意开发一个神经模型来为这项任务制定基准,以有效完成端到端四重线预测,并设法纳入丰富的对话特有和讨论特征的表达方式,以更好地进行四重交错的提取。我们最后指出一些未来可能开展的工作,以促进这项新任务的后续研究。