Quantum span program algorithms for function evaluation commonly have reduced query complexity when promised that the input has a certain structure. We design a modified span program algorithm to show these speed-ups persist even without having a promise ahead of time, and we extend this approach to the more general problem of state conversion. For example, there is a span program algorithm that decides whether two vertices are connected in an $n$-vertex graph with $O(n^{3/2})$ queries in general, but with $O(\sqrt{k}n)$ queries if promised that, if there is a path, there is one with at most $k$ edges. Our algorithm uses $\tilde{O}(\sqrt{k}n)$ queries to solve this problem if there is a path with at most $k$ edges, without knowing $k$ ahead of time.
翻译:函数评价的量子程序算法通常会降低查询的复杂性, 当承诺输入有一定的结构时。 我们设计了一个修改的量子程序算法, 以显示这些超速的算法即使没有提前做出承诺, 也能持续。 我们把这个方法扩大到更普遍的状态转换问题 。 例如, 有一个量子程序算法可以决定两个顶点是否在一美元/ 顶点图中连接到一般的 $O (nQQ3/2}) 查询, 但是如果承诺有一条路径, 有一条最多为$k$的边缘。 我们的算法使用 $\ tilde{ O} (\\\ qrt{k}n) 查询来解决这个问题, 如果有一条路径在最接近 $k$的边缘, 而不知道有 $k$( k) 。