In this article, we develop a reduced basis method for efficiently solving the coupled Stokes/Darcy equations with parametric internal geometry. To accommodate possible changes in topology, we define the Stokes and Darcy domains implicitly via a phase-field indicator function. In our reduced order model, we approximate the parameter-dependent phase-field function with a discrete empirical interpolation method (DEIM) that enables affine decomposition of the associated linear and bilinear forms. In addition, we introduce a modification of DEIM that leads to non-negativity preserving approximations, thus guaranteeing positive-semidefiniteness of the system matrix. We also present a strategy for determining the required number of DEIM modes for a given number of reduced basis functions. We couple reduced basis functions on neighboring patches to enable the efficient simulation of large-scale problems that consist of repetitive subdomains. We apply our reduced basis framework to efficiently solve the inverse problem of characterizing the subsurface damage state of a complete in-situ leach mining site.
翻译:在本条中,我们为有效解决相伴的斯托克斯/达西方程式制定了一个缩小基数的方法,并配以参数内部几何。为了顾及可能发生的地形变化,我们通过一个阶段-实地指标函数间接地界定斯托克斯和达西域。在我们一个缩小顺序模型中,我们用一种独立的实验性内插法来比较依赖参数的阶段-实地功能,使相关的线性表和双线性表单能够进行线性和双线性表单体分解。此外,我们还对DEIM进行了修改,从而导致不增强保护近似值,从而保证了系统矩阵的正-西美化性。我们还提出了一项战略,用以确定一定数量的减少基数功能所需的DEIM模式的数量。我们把相邻的基点功能相匹配,以便能够有效地模拟由重复的子矿区构成的大规模问题。我们运用了我们缩小的基础框架来有效地解决将完整原地沥青矿场的地下损害状态定性为反面的问题。