The queue number of a poset is the queue number of its cover graph when the vertex order is a linear extension of the poset. Heath and Pemmaraju conjectured that every poset of width $w$ has queue number at most $w$. The conjecture has been confirmed for posets of width $w=2$ and for planar posets with $0$ and $1$. In contrast, the conjecture has been refused by a family of general (non-planar) posets of width $w>2$. In this paper, we study queue layouts of two-dimensional posets. First, we construct a two-dimensional poset of width $w > 2$ with queue number $2(w - 1)$, thereby disproving the conjecture for two-dimensional posets. Second, we show an upper bound of $w(w+1)/2$ on the queue number of such posets, thus improving the previously best-known bound of $(w-1)^2+1$ for every $w > 3$.
翻译:外表的队列号是其封面图的队列号, 当顶部顺序是外表的线性延伸。 Heath 和 Pemmaraju 猜测每个宽度的队列布局都以美元为单位。 对于宽度为w=2美元的队列数和以美元和美元为单位的平面布局的队列数, 假设的队列号是其封面图的队列号。 相比之下, 圆顶面顺序是宽度为$>2的组合( 非平面) 。 在本文中, 我们研究了两维面布局的队列布局。 首先, 我们建造了宽度为$2w > 2美元的两维的队列布局, 从而将两维面的队列的队列布局拆开来。 其次, 我们显示这些外表队列的队列数的上限为$w(w+1)/2美元, 从而改进了以前已知的每美元=3美元的队列数(w+1美元) 。