We study Dual-Primal Isogeometric Tearing and Interconnecting (IETI-DP) solvers for non-conforming multi-patch discretizations of a generalized Poisson problem. We realize the coupling between the patches using a symmetric interior penalty discontinuous Galerkin (SIPG) approach. Previously, we have assumed that the interfaces between patches always consist of whole edges. In this paper, we drop this requirement and allow T-junctions. This extension is vital for the consideration of sliding interfaces, for example between the rotor and the stator of an electrical motor. One critical part for the handling of T-junctions in IETI-DP solvers is the choice of the primal degrees of freedom. We propose to add all basis functions that are non-zero at any of the vertices to the primal space. Since there are several such basis functions at any T-junction, we call this concept ''fat vertices''. For this choice, we show a condition number bound that coincides with the bound for the conforming cas
翻译:我们用对称内罚法不连续加热尔金(SIPG) 方法来研究对普瓦森普遍问题多端分解不兼容的双底同位素撕裂和互连(ITI-DP)解析器(ITI-DP) 。 我们认识到,使用对称内罚不连续加热尔金(SIPG) 方法, 补丁之间的连接。 以前, 我们假设补丁之间的界面总是由整个边缘组成。 在本文中, 我们放弃此要求, 允许 T枢纽 。 此扩展对于考虑滑动界面至关重要, 比如电动发动机的转子和电动发动机的螺旋体间。 在 IETI- DP 解答器中处理T枢纽的关键部分是选择自由的初度。 我们提议将任何脊椎中的非零的所有基础函数添加到原始空间。 由于任何 T- 枢纽都有数个这样的基础函数, 我们称这个概念为“ 脂肪倾斜体 ” 。 对于这个选择, 我们显示一个与符合 cas curing 的边框连接的条件编号界限。