This paper describes how corpus-assisted discourse analysis based on keyword (KW) identification and interpretation can benefit from employing Market basket analysis (MBA) after KW extraction. MBA is a data mining technique used originally in marketing that can reveal consistent associations between items in a shopping cart, but also between keywords in a corpus of many texts. By identifying recurring associations between KWs we can compensate for the lack of wider context which is a major issue impeding the interpretation of isolated KWs (esp. when analyzing large data). To showcase the advantages of MBA in "re-contextualizing" keywords within the discourse, a pilot study on the topic of migration was conducted contrasting anti-system and center-right Czech internet media. was conducted. The results show that MBA is useful in identifying the dominant strategy of anti-system news portals: to weave in a confounding ideological undercurrent and connect the concept of migrants to a multitude of other topics (i.e., flooding the discourse).


翻译:本文介绍在KW提取后,利用市场篮子分析(MBA)对主题的识别和解释如何能从基于关键词(KW)的识别和解释的系统辅助话语分析中受益。MBA最初是一种用于营销的数据挖掘技术,它能够揭示购物车各项目之间的一致性,但也揭示许多文本中各关键词之间的关联。通过确定KWs之间反复出现的关联,我们可以弥补缺乏更广泛的背景,这是一个妨碍解释孤立 KWs的一个主要问题(在分析大数据时,缓存)。为了在讨论中展示MBA在“重新翻版”关键词中的优势,开展了一项关于移民主题的试点研究,对反系统和中右捷克互联网媒体进行了对比。研究结果表明,MBA有助于确定反系统新闻门户的主导战略:在意识形态下编织,并将移民的概念与其他许多专题(即充斥着话语)联系起来。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
已删除
将门创投
3+阅读 · 2018年6月20日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
暗通沟渠:Multi-lingual Attention
我爱读PAMI
7+阅读 · 2018年2月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Compliant Fins for Locomotion in Granular Media
Arxiv
0+阅读 · 2021年5月26日
Visualizing and Measuring the Geometry of BERT
Arxiv
7+阅读 · 2019年10月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
已删除
将门创投
3+阅读 · 2018年6月20日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
暗通沟渠:Multi-lingual Attention
我爱读PAMI
7+阅读 · 2018年2月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员