In this paper we initiate the study of finding fair and efficient allocations of an indivisible mixed manna: Divide m indivisible items among n agents under the fairness notion of maximin share (MMS) and the efficiency notion of Pareto optimality (PO). A mixed manna allows an item to be a good for some agents and a chore for others. The problem of finding $\alpha$-MMS allocation for the (near) best $\alpha\in(0,1]$ for which it exists, remains unresolved even for a goods manna with constantly many agents, while the problem of finding $\alpha$-MMS+PO allocation is unexplored for any $\alpha\in(0,1]$. We make significant progress on the above questions for a mixed manna. First, we show that for any $\alpha>0$, an $\alpha$-MMS allocation may not always exist, thus ruling out solving the problem for a fixed $\alpha$. Second, towards computing $\alpha$-MMS+PO allocation for the best possible $\alpha$, we obtain a dichotomous result: We derive two conditions and show that the problem is tractable under these two conditions, while dropping either renders the problem intractable. The two conditions are: (i) number of agents is a constant, and (ii) for every agent, her absolute value for all the items is at least a constant factor of her total (absolute) value for all the goods or all the chores. In particular, first, for instances satisfying (i) and (ii) we design a PTAS - an efficient algorithm to find an $(\alpha-\epsilon)$-MMS and $\gamma$-PO allocation when given $\epsilon,\gamma>0$, for the highest possible $\alpha\in(0,1]$. Second, we show that if either condition is not satisfied then finding an $\alpha$-MMS allocation for any $\alpha\in(0,1]$ is NP-hard, even when a solution exists for $\alpha=1$. To the best of our knowledge, ours is the first algorithm that ensures both approximate MMS and PO guarantees.
翻译:在本文中,我们开始研究如何找到一个不可分割的混合马纳1 (0. 1美元) 的公平和有效分配: 在最大份额(MMS) 和Pareto最佳效率(PO) 的公平概念下,在代理商之间划分一个不可分割的项目。 混合马纳让某些代理商有一个好的项目, 给其他代理商一个鸡毛。 找到一个为( 更早) 最佳( 美元) 的PMS( 0. 1美元) 分配的美元( 0. 1美元) 的问题, 即使对于一个经常有多个代理商的商品来说, 也仍然没有得到解决。 第二, 找到 美元( 美元) 美元( MMS) +PO 拨款的问题没有解决 。 对于任何最大份额( 美元) 最大份额( 美元) 美元( MMS+PO) 的公平 问题没有解决 。 我们获得一个稳定的马萨纳纳 。