The fundamental sparsest cut problem takes as input a graph $G$ together with the edge costs and demands, and seeks a cut that minimizes the ratio between the costs and demands across the cuts. For $n$-node graphs~$G$ of treewidth~$k$, \chlamtac, Krauthgamer, and Raghavendra (APPROX 2010) presented an algorithm that yields a factor-$2^{2^k}$ approximation in time $2^{O(k)} \cdot \operatorname{poly}(n)$. Later, Gupta, Talwar and Witmer (STOC 2013) showed how to obtain a $2$-approximation algorithm with a blown-up run time of $n^{O(k)}$. An intriguing open question is whether one can simultaneously achieve the best out of the aforementioned results, that is, a factor-$2$ approximation in time $2^{O(k)} \cdot \operatorname{poly}(n)$. In this paper, we make significant progress towards this goal, via the following results: (i) A factor-$O(k^2)$ approximation that runs in time $2^{O(k)} \cdot \operatorname{poly}(n)$, directly improving the work of Chlamt\'a\v{c} et al. while keeping the run time single-exponential in $k$. (ii) For any $\varepsilon>0$, a factor-$O(1/\varepsilon^2)$ approximation whose run time is $2^{O(k^{1+\varepsilon}/\varepsilon)} \cdot \operatorname{poly}(n)$, implying a constant-factor approximation whose run time is nearly single-exponential in $k$ and a factor-$O(\log^2 k)$ approximation in time $k^{O(k)} \cdot \operatorname{poly}(n)$. Key to these results is a new measure of a tree decomposition that we call combinatorial diameter, which may be of independent interest.
翻译:基本稀有的剪切问题将输入一个以美元为单位的平方美元( G$) 和边际成本和需求, 并寻求一个能将成本和需求之间的比值最小化的剪切。 对于 $- node 图形~$( 树枝- 美元) 美元,\ chlamtac, krauthgamer, 和Raghavendra (APROX 2010) 提出了一个算法, 该算法可以同时得出2\\2\ 2} (k) 美元( )\ c) 美元( poat ) 美元( potor) 美元 (poly) 美元 (poly) 美元 。 稍后, Gupta, Talwar 和 Witmer( STOC 2013) 显示如何获得 $( 美元) 和 美元( 美元), 美元( 美元) 美元( 美元) 美元( t) 美元( 美元) 美元( 美元) 运行时间( 美元) 。