The $L_p$-discrepancy is a classical quantitative measure for the irregularity of distribution of an $N$-element point set in the $d$-dimensional unit cube. Its inverse for dimension $d$ and error threshold $\varepsilon \in (0,1)$ is the number of points in $[0,1)^d$ that is required such that the minimal normalized $L_p$-discrepancy is less or equal $\varepsilon$. It is well known, that the inverse of $L_2$-discrepancy grows exponentially fast with the dimension $d$, i.e., we have the curse of dimensionality, whereas the inverse of $L_{\infty}$-discrepancy depends exactly linearly on $d$. The behavior of inverse of $L_p$-discrepancy for general $p \not\in \{2,\infty\}$ was an open problem since many years. Recently, the curse of dimensionality for the $L_p$-discrepancy was shown for an infinite sequence of values $p$ in $(1,2]$, but the general result seemed to be out of reach. In the present paper we show that the $L_p$-discrepancy suffers from the curse of dimensionality for all $p$ in $(1,\infty)$ and only the case $p=1$ is still open. This result follows from a more general result that we show for the worst-case error of positive quadrature formulas for an anchored Sobolev space of once differentiable functions in each variable whose first mixed derivative has finite $L_q$-norm, where $q$ is the H\"older conjugate of $p$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

维度灾难是指在高维空间中分析和组织数据时出现的各种现象,这些现象在低维设置(例如日常体验的三维物理空间)中不会发生。
WWW 2024 | GraphTranslator: 将图模型对齐大语言模型
专知会员服务
24+阅读 · 2024年3月25日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
16+阅读 · 2021年12月7日
专知会员服务
16+阅读 · 2021年10月4日
专知会员服务
22+阅读 · 2021年7月31日
专知会员服务
50+阅读 · 2021年6月2日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
147+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【ICML2020】图神经网络谱聚类
专知
10+阅读 · 2020年7月7日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
概率图模型体系:HMM、MEMM、CRF
机器学习研究会
30+阅读 · 2018年2月10日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年4月24日
Arxiv
0+阅读 · 2024年4月23日
Arxiv
0+阅读 · 2024年4月23日
VIP会员
相关资讯
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【ICML2020】图神经网络谱聚类
专知
10+阅读 · 2020年7月7日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
概率图模型体系:HMM、MEMM、CRF
机器学习研究会
30+阅读 · 2018年2月10日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员