We study the asymptotic eigenvalue distribution of the Slepian spatiospectral concentration problem within subdomains of the $d$-dimensional unit ball $\mathbb{B}^d$. The clustering of the eigenvalues near zero and one is a well-known phenomenon. Here, we provide an analytical investigation of this phenomenon for two different notions of bandlimit: (a) multivariate polynomials, with the maximal polynomial degree determining the bandlimit, (b) basis functions that separate into radial and spherical contributions (expressed in terms of Jacobi polynomials and spherical harmonics, respectively), with separate maximal degrees for the radial and spherical contributions determining the bandlimit. In particular, we investigate the number of relevant non-zero eigenvalues (the so-called Shannon number) and obtain distinct asymptotic results for both notions of bandlimit, characterized by Jacobi weights $W_0$ and a modification $\widetilde{W_0}$, respectively. The analytic results are illustrated by numerical examples on the 3-d ball.
翻译:暂无翻译