The Robust Perron Cluster Analysis (PCCA+) has become a popular spectral clustering algorithm for coarse-graining transition matrices of nearly decomposable Markov chains with transition states. Originally developed for reversible Markov chains, the algorithm only worked for transition matrices with real eigenvalues. In this paper, we therefore extend the theoretical framework of PCCA+ to Markov chains with a complex eigen-decomposition. We show that by replacing a complex conjugate pair of eigenvectors by their real and imaginary components, a real representation of the same subspace is obtained, which is suitable for the cluster analysis. We show that our approach leads to the same results as the generalized PCCA+ (GenPCCA), which replaces the complex eigen-decomposition by a conceptually more difficult real Schur decomposition. We apply the method on non-reversible Markov chains, including circular chains,and demonstrate its efficiency compared to GenPCCA. The experiments are performed in the Matlab programming language and codes are provided.
翻译:固态 Perron 群集分析(PCCA+) 已成为一种流行的光谱群集算法, 用于处理与转型期国家几乎可腐蚀的Markov链条相交的粗化过渡矩阵。 最初是为可逆的Markov 链条开发的算法, 算法只对具有真实的精华值的过渡矩阵起作用。 因此, 在本文中, 我们将PCCA+ 的理论框架扩展至具有复杂的精华分解作用的Markov 链条。 我们显示, 通过用真实和想象的构件取代复杂的一对精子链, 获得了适合集分析的同一子空间的真正代表。 我们显示, 我们的方法与通用的 PCCA+ (GenPCA) 相匹配, 通用的 PCCA+ (GenPCA) 以概念上更为困难的精华化法取代复杂的机床。 我们对不可逆的Markov 链条( 包括循环链条) 应用了方法, 并展示其与 GenPCCA 相比的效率。 实验是以Matlab 编程语言和代码进行。