Buildings' segmentation is a fundamental task in the field of earth observation and aerial imagery analysis. Most existing deep learning-based methods in the literature can be applied to fixed or narrow-ranged spatial resolution imagery. In practical scenarios, users deal with a broad spectrum of image resolutions. Thus, a given aerial image often needs to be re-sampled to match the spatial resolution of the dataset used to train the deep learning model, which results in a degradation in segmentation performance. To overcome this, we propose a Scale-invariant Neural Network (Sci-Net) that can segment buildings present in aerial images at different spatial resolutions. Specifically, our approach leverages UNet hierarchical representations and dilated convolutions to extract fine-grained multi-scale representations. Our method significantly outperforms other state of the art models on the Open Cities AI dataset with a steady improvements margin across different resolutions.
翻译:建筑分割是地球观测和航空图像分析领域的一项基本任务。文献中现有的大部分深层学习方法可以适用于固定或窄距离空间分辨率图像。在实际情况下,用户处理的图像分辨率范围很广。因此,一个特定的航空图像往往需要重新取样,以与用于培训深层学习模型的数据集的空间分辨率相匹配,从而导致分离性性性能的退化。为了克服这一点,我们提议建立一个规模变化性神经网络(Sci-Net),可以将分布在不同空间分辨率的航空图像中的建筑物进行分割。具体地说,我们的方法是利用UNet的上层显示和变相来提取精细细的多尺度显示。我们的方法大大超越了开放城市AI数据集的艺术模型的其他状态,在不同分辨率上都有稳定的改进幅度。