We review common situations in Bayesian latent variable models where the prior distribution that a researcher specifies does not match the prior distribution that the estimation method uses. These situations can arise from the positive definite requirement on correlation matrices, from the sign indeterminacy of factor loadings, and from order constraints on threshold parameters. The issue is especially problematic for reproducibility and for model checks that involve prior distributions, including prior predictive assessment and Bayes factors. In these cases, one might be assessing the wrong model, casting doubt on the relevance of the results. The most straightforward solution to these issues sometimes involves use of informative prior distributions. We explore other solutions and make recommendations for practice.
翻译:我们审查了巴耶斯潜伏变量模型的常见情况,其中研究人员指定的先前分布与估计方法使用的先前分布不相符,这些情况可能来自对相关矩阵的肯定明确要求、要素负荷的标志不确定以及临界参数的定序限制。这个问题特别难以复制,也特别难以进行涉及先前分布的模型检查,包括事先预测评估和贝耶斯因素。在这种情况下,人们可能评估错误的模式,使人对结果的相关性产生怀疑。这些问题的最直接的解决办法有时涉及使用信息性先前分布。我们探讨其他解决办法,并提出实践建议。