This paper provides theoretical and computational developments in statistical shape analysis of shape graphs, and demonstrates them using analysis of complex data from retinal blood-vessel (RBV) networks. The shape graphs are represented by a set of nodes and edges (planar articulated curves) connecting some of these nodes. The goals are to utilize shapes of edges and connectivities and locations of nodes to: (1) characterize full shapes, (2) quantify shape differences, and (3) model statistical variability. We develop a mathematical representation, elastic Riemannian shape metrics, and associated tools for such statistical analysis. Specifically, we derive tools for shape graph registration, geodesics, summaries, and shape modeling. Geodesics are convenient for visualizing optimal deformations, and PCA helps in dimension reduction and statistical modeling. One key challenge here is comparisons of shape graphs with vastly different complexities (in number of nodes and edges). This paper introduces a novel multi-scale representation of shape graphs to handle this challenge. Using the notions of (1) ``effective resistance" to cluster nodes and (2) elastic shape averaging of edge curves, one can reduce shape graph complexity while maintaining overall structures. This way, we can compare shape graphs by bringing them to similar complexity. We demonstrate these ideas on Retinal Blood Vessel (RBV) networks taken from the STARE and DRIVE databases.
翻译:本文提供形状图表统计形状分析的理论和计算发展, 并用对视网膜血液( RBV) 网络的复杂数据的分析来展示这些图表。 形状图表由一系列连接部分节点的节点和边缘( 平面分解曲线) 组成。 目标是利用边缘和连接的形状以及节点的位置来:(1) 形状的特征, (2) 量化形状差异, (3) 统计变异模式。 我们开发了一个数学代表、 弹性里伊曼形形状的尺度, 以及用于进行这种统计分析的相关工具。 具体地说, 我们为形状图的登记、 大地特征、 摘要和形状建模制作工具。 大地测量对于优化的变形和边缘( 平面曲线和节点的大小) 以及节点位置的位置进行对比。 本文介绍了一种新型的多级形状图表代表, 以应对这一挑战。 使用 (1) 有效抗力的图解, 和(2) 形状的形状模型, 我们用这种变形模型的形式来比较这些变形的形状, 我们用图表的形状的形状的变形变形结构, 显示这些变变的形状的形状的形状的形状的形状的形状的形状, 。 一种用我们用图表的变形变形变形变的形状的形状的变形变的形状的形状的形状的形状的形状的形状的形状的形状的形状的形状的变形变形变形变形变的形状的形状, 。