The performance gap between predicted and actual energy consumption in the building domain remains an unsolved problem in practice. The gap exists differently in both current mainstream methods: the first-principles model and the machine learning (ML) model. Inspired by the concept of time-series decomposition to identify different uncertainties, we proposed a hybrid-model approach by combining both methods to minimize this gap: 1. Use the first-principles method as an encoding tool to convert the building static features and predictable patterns in time-series simulation results; 2. The ML method combines the results as extra inputs with historical records simultaneously, trains the model to capture the implicit performance difference, and aligns to calibrate the output. To extend this approach in practice, a new concept in the modeling process: Level-of-Information (LOI), is introduced to leverage the balance between the investment of simulation modeling detail and the accuracy boost. The approach is tested over a three-year period, with hourly measured energy load from an operating commercial building in Shanghai. The result presents a dominant accuracy enhancement: The hybrid-model shows higher accuracy in prediction with better interpretability; More important, it releases the practitioners from modeling workload and computational resources in refining simulation. In summary, the approach provides a nexus for integrating domain knowledge via building simulation with data-driven methods. This mindset applies to solving general engineering problems and leads to improved prediction accuracy. The result and source data are available at https://github.com/ResearchGroup-G/PerformanceGap-Hybrid-Approach.
翻译:建筑领域预计和实际能源消耗的性能差距在实践中仍然是一个尚未解决的问题。在目前的主流方法中,第一原则模型和机器学习(ML)模型都存在差异。在时间序列分解概念的启发下,我们建议采用混合模型方法,将两种方法结合起来,以尽量减少这一差距:1 使用第一原则方法作为编码工具,在时间序列模拟结果中转换建筑静态特征和可预测的模式;2. ML方法将结果作为额外投入与历史记录同时结合起来,培训模型以捕捉隐含的性能差异,并调整模型以校准产出。为了在实际中推广这一方法,在建模过程中的新概念:信息级别(LOI),我们提出混合模型模式方法,以平衡模拟模型细节和准确性推动两者的投资。该方法在三年内进行测试,从上海的运行商业大楼每小时测量能量负荷。其结果是提高精度:混合模型显示预测的准确性更高,可更好地解释性差;更重要的是,它通过模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析、分析