Intrusion detection systems (IDS) generate a large number of false alerts which makes it difficult to inspect true positives. Hence, alert prioritization plays a crucial role in deciding which alerts to investigate from an enormous number of alerts that are generated by IDS. Recently, deep reinforcement learning (DRL) based deep deterministic policy gradient (DDPG) off-policy method has shown to achieve better results for alert prioritization as compared to other state-of-the-art methods. However, DDPG is prone to the problem of overfitting. Additionally, it also has a poor exploration capability and hence it is not suitable for problems with a stochastic environment. To address these limitations, we present a soft actor-critic based DRL algorithm for alert prioritization (SAC-AP), an off-policy method, based on the maximum entropy reinforcement learning framework that aims to maximize the expected reward while also maximizing the entropy. Further, the interaction between an adversary and a defender is modeled as a zero-sum game and a double oracle framework is utilized to obtain the approximate mixed strategy Nash equilibrium (MSNE). SAC-AP finds robust alert investigation policies and computes pure strategy best response against opponent's mixed strategy. We present the overall design of SAC-AP and evaluate its performance as compared to other state-of-the art alert prioritization methods. We consider defender's loss, i.e., the defender's inability to investigate the alerts that are triggered due to attacks, as the performance metric. Our results show that SAC-AP achieves up to 30% decrease in defender's loss as compared to the DDPG based alert prioritization method and hence provides better protection against intrusions. Moreover, the benefits are even higher when SAC-AP is compared to other traditional alert prioritization methods including Uniform, GAIN, RIO and Suricata.


翻译:入侵探测系统(IDS)产生大量虚假警报,使得难以检查真实的正数。 因此, 警戒优先排序在决定哪些警报用于调查由IDS产生的大量警报中发挥着关键作用。 最近, 深度强化学习(DRL)基于深度确定性政策梯度(DDPG)的离政策方法显示,与其他最先进方法相比,在优先排序预警方面取得了更好的结果。 但是, DDPG容易出现过度配置的问题。 此外, DDPG也缺乏探索能力,因此不适合处理与随机环境有关的问题。 为了应对这些限制,我们展示了基于软的动作批评性DRL(SAC-AP)算法,以提醒优先排序(SAC-AP)算出一个基于最大增压性强化学习框架,目的是最大限度地增加预期的奖励,同时尽量扩大增压。 此外, 对手和捍卫者之间的交互互动模式是零和双重或两极分框架,用来获得接近的混合战略(MSNEAR-C)升级(MS-AC), 以SARC-SRAS-S-resent requist rest reforst reforst reforst reforst reforst reforst reforst sess sess refervation sess sess sess sal sal sal sal resmal ress) resmal ress ress supal deviewtal ress s reviews to ress sal ress supal sal ress sal lats。 我们算。 我们算起算。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
11+阅读 · 2020年12月2日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
13+阅读 · 2018年1月20日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员