Proving local robustness is crucial to increase the reliability of neural networks. While many verifiers prove robustness in $L_\infty$ $\epsilon$-balls, very little work deals with robustness verification in $L_0$ $\epsilon$-balls, capturing robustness to few pixel attacks. This verification introduces a combinatorial challenge, because the space of pixels to perturb is discrete and of exponential size. A previous work relies on covering designs to identify sets for defining $L_\infty$ neighborhoods, which if proven robust imply that the $L_0$ $\epsilon$-ball is robust. However, the number of neighborhoods to verify remains very high, leading to a high analysis time. We propose covering verification designs, a combinatorial design that tailors effective but analysis-incompatible coverings to $L_0$ robustness verification. The challenge is that computing a covering verification design introduces a high time and memory overhead, which is intensified in our setting, where multiple candidate coverings are required to identify how to reduce the overall analysis time. We introduce CoVerD, an $L_0$ robustness verifier that selects between different candidate coverings without constructing them, but by predicting their block size distribution. This prediction relies on a theorem providing closed-form expressions for the mean and variance of this distribution. CoVerD constructs the chosen covering verification design on-the-fly, while keeping the memory consumption minimal and enabling to parallelize the analysis. The experimental results show that CoVerD reduces the verification time on average by up to 5.1x compared to prior work and that it scales to larger $L_0$ $\epsilon$-balls.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员