Traditionally, research on Craig interpolation is concerned with (a) establishing the Craig interpolation property (CIP) of a logic saying that every valid implication in the logic has a Craig interpolant and (b) designing algorithms that extract Craig interpolants from proofs. Logics that lack the CIP are regarded as `pathological' and excluded from consideration. In this chapter, we survey variations and generalisations of traditional Craig interpolation. First, we consider Craig interpolants for implications in logics without the CIP, focusing on the decidability and complexity of deciding their existence. We then generalise interpolation by looking for Craig interpolants in languages L' that can be weaker than the language L of the given implication. Thus, do not only we restrict the non-logical symbols of Craig interpolants but also the logical ones. The resulting L/L'-interpolation problem generalises L/L'-definability, the question whether an L-formula is equivalent to some L'-formula. After that, we move from logical languages to formal languages where interpolation disguises itself as separation: given two disjoint languages in a class C, does there exist a separating language in a smaller class C'? This question is particularly well-studied in the case when the input languages are regular and the separating language is first-order definable. Finally, we connect the different research strands by showing how the decidability of the separation problem for regular languages can be used to prove the decidability of Craig interpolant existence for linear temporal logic LTL.


翻译:传统上,关于Craig插值的研究主要关注两个方面:(a) 确立逻辑的Craig插值性质(CIP),即逻辑中每个有效蕴含式均存在Craig插值式;(b) 设计从证明中提取Craig插值式的算法。缺乏CIP的逻辑通常被视为“病态”而被排除在研究范围之外。本章系统综述传统Craig插值的变体与推广。首先,我们探讨无CIP逻辑中蕴含式的Craig插值式,重点关注其存在性判定的可判定性与计算复杂度。随后通过寻找比给定蕴含式语言L更弱语言L'中的Craig插值式来推广插值概念,这不仅限制插值式的非逻辑符号,同时限制其逻辑符号。由此产生的L/L'-插值问题推广了L/L'-可定义性问题,即判定L公式是否等价于某个L'公式。接着,我们将研究从逻辑语言转向形式语言,此时插值问题表现为分离问题:给定某类C中两个不相交语言,是否存在更小类C'中的分离语言?该问题在输入语言为正则语言且分离语言为一阶可定义语言的情形下已得到深入研究。最后,我们通过展示正则语言分离问题的可判定性如何用于证明线性时序逻辑LTL的Craig插值式存在性可判定,将不同研究脉络联系起来。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员