This paper presents a robust reinforcement learning algorithm called robust deterministic policy gradient (RDPG), which reformulates the H-infinity control problem as a two-player zero-sum dynamic game between a user and an adversary. The method combines deterministic policy gradients with deep reinforcement learning to train a robust policy that attenuates disturbances efficiently. A practical variant, robust deep deterministic policy gradient (RDDPG), integrates twin-delayed updates for stability and sample efficiency. Experiments on an unmanned aerial vehicle demonstrate superior robustness and tracking accuracy under severe disturbance conditions.


翻译:本文提出了一种名为鲁棒确定性策略梯度(RDPG)的强化学习算法,该算法将H∞控制问题重新表述为用户与对手之间的双人零和动态博弈。该方法将确定性策略梯度与深度强化学习相结合,训练出一种能有效抑制干扰的鲁棒策略。其实用变体——鲁棒深度确定性策略梯度(RDDPG)——集成了双延迟更新机制以提高稳定性和样本效率。在无人飞行器上的实验表明,该方法在严重干扰条件下展现出卓越的鲁棒性和跟踪精度。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员