Massive captured face images are stored in the database for the identification of individuals. However, these images can be observed intentionally or unintentionally by data managers, which is not at the will of individuals and may cause privacy violations. Existing protection schemes can maintain identifiability but slightly change the facial appearance, rendering it still susceptible to the visual perception of the original identity by data managers. In this paper, we propose an effective identity hider for human vision protection, which can significantly change appearance to visually hide identity while allowing identification for face recognizers. Concretely, the identity hider benefits from two specially designed modules: 1) The virtual face generation module generates a virtual face with a new appearance by manipulating the latent space of StyleGAN2. In particular, the virtual face has a similar parsing map to the original face, supporting other vision tasks such as head pose detection. 2) The appearance transfer module transfers the appearance of the virtual face into the original face via attribute replacement. Meanwhile, identity information can be preserved well with the help of the disentanglement networks. In addition, diversity and background preservation are supported to meet the various requirements. Extensive experiments demonstrate that the proposed identity hider achieves excellent performance on privacy protection and identifiability preservation.
翻译:暂无翻译