We present a novel method for working with the physicist's method of amortized resource analysis, which we call the quantum physicist's method. These principles allow for more precise analyses of resources that are not monotonically consumed, like stack. This method takes its name from its two major features, worldviews and resource tunneling, which behave analogously to quantum superposition and quantum tunneling. We use the quantum physicist's method to extend the Automatic Amortized Resource Analysis (AARA) type system, enabling the derivation of resource bounds based on tree depth. In doing so, we also introduce remainder contexts, which aid bookkeeping in linear type systems. We then evaluate this new type system's performance by bounding stack use of functions in the Set module of OCaml's standard library. Compared to state-of-the-art implementations of AARA, our new system derives tighter bounds with only moderate overhead.


翻译:我们提出了一个与物理学家的摊还资源分析方法合作的新方法,我们称之为量子物理学家的方法。这些原则使得能够更精确地分析非单质消耗的资源,如堆叠。这种方法取自其两个主要特征,即世界观和资源隧道,与量子叠加和量子隧道类似。我们使用量子物理学家的方法扩展自动摊还资源分析(AARA)类型系统,从而能够根据树深度得出资源界限。我们这样做,我们还引入了剩余环境,用于线型系统中的簿记。我们随后通过将OCaml标准图书馆的Set模块的功能捆绑在一起来评估这一新类型系统的性能。与AARA的标准图书馆的“Set ” 模块相比,我们的新系统有了更紧凑的边框,只有中度的顶端。

0
下载
关闭预览

相关内容

专知会员服务
84+阅读 · 2020年12月5日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
0+阅读 · 2021年8月31日
VIP会员
相关VIP内容
专知会员服务
84+阅读 · 2020年12月5日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员