Identifying meaningful and independent factors of variation in a dataset is a challenging learning task frequently addressed by means of deep latent variable models. This task can be viewed as learning symmetry transformations preserving the value of a chosen property along latent dimensions. However, existing approaches exhibit severe drawbacks in enforcing the invariance property in the latent space. We address these shortcomings with a novel approach to cycle consistency. Our method involves two separate latent subspaces for the target property and the remaining input information, respectively. In order to enforce invariance as well as sparsity in the latent space, we incorporate semantic knowledge by using cycle consistency constraints relying on property side information. The proposed method is based on the deep information bottleneck and, in contrast to other approaches, allows using continuous target properties and provides inherent model selection capabilities. We demonstrate on synthetic and molecular data that our approach identifies more meaningful factors which lead to sparser and more interpretable models with improved invariance properties.

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/

The class imbalance problem, as an important issue in learning node representations, has drawn increasing attention from the community. Although the imbalance considered by existing studies roots from the unequal quantity of labeled examples in different classes (quantity imbalance), we argue that graph data expose a unique source of imbalance from the asymmetric topological properties of the labeled nodes, i.e., labeled nodes are not equal in terms of their structural role in the graph (topology imbalance). In this work, we first probe the previously unknown topology-imbalance issue, including its characteristics, causes, and threats to semi-supervised node classification learning. We then provide a unified view to jointly analyzing the quantity- and topology- imbalance issues by considering the node influence shift phenomenon with the Label Propagation algorithm. In light of our analysis, we devise an influence conflict detection -- based metric Totoro to measure the degree of graph topology imbalance and propose a model-agnostic method ReNode to address the topology-imbalance issue by re-weighting the influence of labeled nodes adaptively based on their relative positions to class boundaries. Systematic experiments demonstrate the effectiveness and generalizability of our method in relieving topology-imbalance issue and promoting semi-supervised node classification. The further analysis unveils varied sensitivity of different graph neural networks (GNNs) to topology imbalance, which may serve as a new perspective in evaluating GNN architectures.

0
6
下载
预览

In real world settings, numerous constraints are present which are hard to specify mathematically. However, for the real world deployment of reinforcement learning (RL), it is critical that RL agents are aware of these constraints, so that they can act safely. In this work, we consider the problem of learning constraints from demonstrations of a constraint-abiding agent's behavior. We experimentally validate our approach and show that our framework can successfully learn the most likely constraints that the agent respects. We further show that these learned constraints are \textit{transferable} to new agents that may have different morphologies and/or reward functions. Previous works in this regard have either mainly been restricted to tabular (discrete) settings, specific types of constraints or assume the environment's transition dynamics. In contrast, our framework is able to learn arbitrary \textit{Markovian} constraints in high-dimensions in a completely model-free setting. The code can be found it: \url{https://github.com/shehryar-malik/icrl}.

0
8
下载
预览

In semi-supervised domain adaptation, a few labeled samples per class in the target domain guide features of the remaining target samples to aggregate around them. However, the trained model cannot produce a highly discriminative feature representation for the target domain because the training data is dominated by labeled samples from the source domain. This could lead to disconnection between the labeled and unlabeled target samples as well as misalignment between unlabeled target samples and the source domain. In this paper, we propose a novel approach called Cross-domain Adaptive Clustering to address this problem. To achieve both inter-domain and intra-domain adaptation, we first introduce an adversarial adaptive clustering loss to group features of unlabeled target data into clusters and perform cluster-wise feature alignment across the source and target domains. We further apply pseudo labeling to unlabeled samples in the target domain and retain pseudo-labels with high confidence. Pseudo labeling expands the number of ``labeled" samples in each class in the target domain, and thus produces a more robust and powerful cluster core for each class to facilitate adversarial learning. Extensive experiments on benchmark datasets, including DomainNet, Office-Home and Office, demonstrate that our proposed approach achieves the state-of-the-art performance in semi-supervised domain adaptation.

0
16
下载
预览

This paper studies the problem of semi-supervised video object segmentation(VOS). Multiple works have shown that memory-based approaches can be effective for video object segmentation. They are mostly based on pixel-level matching, both spatially and temporally. The main shortcoming of memory-based approaches is that they do not take into account the sequential order among frames and do not exploit object-level knowledge from the target. To address this limitation, we propose to Learn position and target Consistency framework for Memory-based video object segmentation, termed as LCM. It applies the memory mechanism to retrieve pixels globally, and meanwhile learns position consistency for more reliable segmentation. The learned location response promotes a better discrimination between target and distractors. Besides, LCM introduces an object-level relationship from the target to maintain target consistency, making LCM more robust to error drifting. Experiments show that our LCM achieves state-of-the-art performance on both DAVIS and Youtube-VOS benchmark. And we rank the 1st in the DAVIS 2020 challenge semi-supervised VOS task.

0
3
下载
预览

The key challenge in learning dense correspondences lies in the lack of ground-truth matches for real image pairs. While photometric consistency losses provide unsupervised alternatives, they struggle with large appearance changes, which are ubiquitous in geometric and semantic matching tasks. Moreover, methods relying on synthetic training pairs often suffer from poor generalisation to real data. We propose Warp Consistency, an unsupervised learning objective for dense correspondence regression. Our objective is effective even in settings with large appearance and view-point changes. Given a pair of real images, we first construct an image triplet by applying a randomly sampled warp to one of the original images. We derive and analyze all flow-consistency constraints arising between the triplet. From our observations and empirical results, we design a general unsupervised objective employing two of the derived constraints. We validate our warp consistency loss by training three recent dense correspondence networks for the geometric and semantic matching tasks. Our approach sets a new state-of-the-art on several challenging benchmarks, including MegaDepth, RobotCar and TSS. Code and models will be released at https://github.com/PruneTruong/DenseMatching.

0
3
下载
预览

While recent studies on semi-supervised learning have shown remarkable progress in leveraging both labeled and unlabeled data, most of them presume a basic setting of the model is randomly initialized. In this work, we consider semi-supervised learning and transfer learning jointly, leading to a more practical and competitive paradigm that can utilize both powerful pre-trained models from source domain as well as labeled/unlabeled data in the target domain. To better exploit the value of both pre-trained weights and unlabeled target examples, we introduce adaptive consistency regularization that consists of two complementary components: Adaptive Knowledge Consistency (AKC) on the examples between the source and target model, and Adaptive Representation Consistency (ARC) on the target model between labeled and unlabeled examples. Examples involved in the consistency regularization are adaptively selected according to their potential contributions to the target task. We conduct extensive experiments on several popular benchmarks including CUB-200-2011, MIT Indoor-67, MURA, by fine-tuning the ImageNet pre-trained ResNet-50 model. Results show that our proposed adaptive consistency regularization outperforms state-of-the-art semi-supervised learning techniques such as Pseudo Label, Mean Teacher, and MixMatch. Moreover, our algorithm is orthogonal to existing methods and thus able to gain additional improvements on top of MixMatch and FixMatch. Our code is available at https://github.com/SHI-Labs/Semi-Supervised-Transfer-Learning.

0
20
下载
预览

Deep learning-based semi-supervised learning (SSL) algorithms have led to promising results in medical images segmentation and can alleviate doctors' expensive annotations by leveraging unlabeled data. However, most of the existing SSL algorithms in literature tend to regularize the model training by perturbing networks and/or data. Observing that multi/dual-task learning attends to various levels of information which have inherent prediction perturbation, we ask the question in this work: can we explicitly build task-level regularization rather than implicitly constructing networks- and/or data-level perturbation-and-transformation for SSL? To answer this question, we propose a novel dual-task-consistency semi-supervised framework for the first time. Concretely, we use a dual-task deep network that jointly predicts a pixel-wise segmentation map and a geometry-aware level set representation of the target. The level set representation is converted to an approximated segmentation map through a differentiable task transform layer. Simultaneously, we introduce a dual-task consistency regularization between the level set-derived segmentation maps and directly predicted segmentation maps for both labeled and unlabeled data. Extensive experiments on two public datasets show that our method can largely improve the performance by incorporating the unlabeled data. Meanwhile, our framework outperforms the state-of-the-art semi-supervised medical image segmentation methods. Code is available at: https://github.com/Luoxd1996/DTC

0
9
下载
预览

Domain shift is a fundamental problem in visual recognition which typically arises when the source and target data follow different distributions. The existing domain adaptation approaches which tackle this problem work in the closed-set setting with the assumption that the source and the target data share exactly the same classes of objects. In this paper, we tackle a more realistic problem of open-set domain shift where the target data contains additional classes that are not present in the source data. More specifically, we introduce an end-to-end Progressive Graph Learning (PGL) framework where a graph neural network with episodic training is integrated to suppress underlying conditional shift and adversarial learning is adopted to close the gap between the source and target distributions. Compared to the existing open-set adaptation approaches, our approach guarantees to achieve a tighter upper bound of the target error. Extensive experiments on three standard open-set benchmarks evidence that our approach significantly outperforms the state-of-the-arts in open-set domain adaptation.

0
9
下载
预览

Despite much success, deep learning generally does not perform well with small labeled training sets. In these scenarios, data augmentation has shown much promise in alleviating the need for more labeled data, but it so far has mostly been applied in supervised settings and achieved limited gains. In this work, we propose to apply data augmentation to unlabeled data in a semi-supervised learning setting. Our method, named Unsupervised Data Augmentation or UDA, encourages the model predictions to be consistent between an unlabeled example and an augmented unlabeled example. Unlike previous methods that use random noise such as Gaussian noise or dropout noise, UDA has a small twist in that it makes use of harder and more realistic noise generated by state-of-the-art data augmentation methods. This small twist leads to substantial improvements on six language tasks and three vision tasks even when the labeled set is extremely small. For example, on the IMDb text classification dataset, with only 20 labeled examples, UDA achieves an error rate of 4.20, outperforming the state-of-the-art model trained on 25,000 labeled examples. On standard semi-supervised learning benchmarks CIFAR-10 and SVHN, UDA outperforms all previous approaches and achieves an error rate of 2.7% on CIFAR-10 with only 4,000 examples and an error rate of 2.85% on SVHN with only 250 examples, nearly matching the performance of models trained on the full sets which are one or two orders of magnitude larger. UDA also works well on large-scale datasets such as ImageNet. When trained with 10% of the labeled set, UDA improves the top-1/top-5 accuracy from 55.1/77.3% to 68.7/88.5%. For the full ImageNet with 1.3M extra unlabeled data, UDA further pushes the performance from 78.3/94.4% to 79.0/94.5%.

0
4
下载
预览

Colorizing a given gray-level image is an important task in the media and advertising industry. Due to the ambiguity inherent to colorization (many shades are often plausible), recent approaches started to explicitly model diversity. However, one of the most obvious artifacts, structural inconsistency, is rarely considered by existing methods which predict chrominance independently for every pixel. To address this issue, we develop a conditional random field based variational auto-encoder formulation which is able to achieve diversity while taking into account structural consistency. Moreover, we introduce a controllability mecha- nism that can incorporate external constraints from diverse sources in- cluding a user interface. Compared to existing baselines, we demonstrate that our method obtains more diverse and globally consistent coloriza- tions on the LFW, LSUN-Church and ILSVRC-2015 datasets.

0
7
下载
预览
小贴士
相关论文
Deli Chen,Yankai Lin,Guangxiang Zhao,Xuancheng Ren,Peng Li,Jie Zhou,Xu Sun
6+阅读 · 2021年10月8日
Usman Anwar,Shehryar Malik,Alireza Aghasi,Ali Ahmed
8+阅读 · 2021年5月21日
Cross-Domain Adaptive Clustering for Semi-Supervised Domain Adaptation
Jichang Li,Guanbin Li,Yemin Shi,Yizhou Yu
16+阅读 · 2021年4月19日
Li Hu,Peng Zhang,Bang Zhang,Pan Pan,Yinghui Xu,Rong Jin
3+阅读 · 2021年4月9日
Prune Truong,Martin Danelljan,Fisher Yu,Luc Van Gool
3+阅读 · 2021年4月7日
Abulikemu Abuduweili,Xingjian Li,Humphrey Shi,Cheng-Zhong Xu,Dejing Dou
20+阅读 · 2021年3月3日
Xiangde Luo,Jieneng Chen,Tao Song,Yinan Chen,Guotai Wang,Shaoting Zhang
9+阅读 · 2020年9月9日
Yadan Luo,Zijian Wang,Zi Huang,Mahsa Baktashmotlagh
9+阅读 · 2020年6月22日
Qizhe Xie,Zihang Dai,Eduard Hovy,Minh-Thang Luong,Quoc V. Le
4+阅读 · 2019年7月10日
Structural Consistency and Controllability for Diverse Colorization
Safa Messaoud,David Forsyth,Alexander G. Schwing
7+阅读 · 2018年9月6日
相关VIP内容
专知会员服务
89+阅读 · 2020年8月7日
因果图,Causal Graphs,52页ppt
专知会员服务
154+阅读 · 2020年4月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
23+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
75+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
56+阅读 · 2019年10月9日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
16+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
12+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
8+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
6+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
9+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
3+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
13+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
5+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员