Among the most important graph parameters is the Diameter, the largest distance between any two vertices. There are no known very efficient algorithms for computing the Diameter exactly. Thus, much research has been devoted to how fast this parameter can be approximated. Chechik et al. showed that the diameter can be approximated within a multiplicative factor of $3/2$ in $\tilde{O}(m^{3/2})$ time. Furthermore, Roditty and Vassilevska W. showed that unless the Strong Exponential Time Hypothesis (SETH) fails, no $O(n^{2-\epsilon})$ time algorithm can achieve an approximation factor better than $3/2$ in sparse graphs. Thus the above algorithm is essentially optimal for sparse graphs for approximation factors less than $3/2$. It was, however, completely plausible that a $3/2$-approximation is possible in linear time. In this work we conditionally rule out such a possibility by showing that unless SETH fails no $O(m^{3/2-\epsilon})$ time algorithm can achieve an approximation factor better than $5/3$. Another fundamental set of graph parameters are the Eccentricities. The Eccentricity of a vertex $v$ is the distance between $v$ and the farthest vertex from $v$. Chechik et al. showed that the Eccentricities of all vertices can be approximated within a factor of $5/3$ in $\tilde{O}(m^{3/2})$ time and Abboud et al. showed that no $O(n^{2-\epsilon})$ algorithm can achieve better than $5/3$ approximation in sparse graphs. We show that the runtime of the $5/3$ approximation algorithm is also optimal under SETH. We also show that no near-linear time algorithm can achieve a better than $2$ approximation for the Eccentricities and that this is essentially tight: we give an algorithm that approximates Eccentricities within a $2+\delta$ factor in $\tilde{O}(m/\delta)$ time for any $0<\delta<1$. This beats all Eccentricity algorithms in Cairo et al.
翻译:在最重要的图表参数中, 直径是3/2美元的倍数因子 { 平面 { 平面 { 平面 { 平面 { 平面 { 平面 { 平面 } 之间的最大距离。 没有已知的计算“ 平面 ” 的非常高效的算法。 因此, 已经对这个参数的近似率进行了大量研究。 Chechik 等人 显示, 直径可以在3/2美元( 美元= O} (m\ 3/2 ) 美元) 的倍数范围内大约。 此外, Roditty 和 Vassilevska W. 表明, 除非SETylor 美元( 平面 美元) 的“ 平面 平面 美元 美元 ”, 而不是“ 平面 平面 美元 美元 ” 。 平面 平面 平面 平面 平面 平面 平面 平面 平面, 平面 平面 平面 平面 平面 平面, 平面 平面, 平面平面平面平面, 平面平面平面平平平平平平平平面平平平平平平平平平平平平平平平平平平平平平平平平平平。