When can we compute the diameter of a graph in quasi linear time? We address this question for the class of split graphs, that we observe to be the hardest instances for deciding whether the diameter is at most two. We stress that although the diameter of a non-complete split graph canonly be either 2 or 3, under the Strong Exponential-Time Hypothesis (SETH) we cannot compute the diameter of an $n$-vertex $m$-edge split graph in less than quadratic time -- in the size $n + m$ of the input. Therefore it is worth to study the complexity of diameter computation on subclasses of split graphs, in order to better understand the complexity border. Specifically, we consider the split graphs with bounded clique-interval number and their complements, with the former being a natural variation of the concept of interval number for split graphs that we introduce in this paper. We first discuss the relations between the clique-interval number and other graph invariants such as the classic interval number of graphs, the treewidth, the VC-dimension and the stabbing number of a related hypergraph. Then, in part based on these above relations, we almost completely settle the complexity of diameter computation on these subclasses of split graphs:$\bullet$ For the $k$-clique-interval split graphs, we can compute their diameter in truly subquadratic time if $k = \mathcal{O}(1)$, and even in quasi linear time if $k = o(log n)$ and in addition a corresponding ordering of the vertices in the clique is given. However, under SETH this cannot be done intruly subquadratic time for any $k = \omega(log n)$.$\bullet$ For the complements of $k$-clique-interval split graphs, we can compute their diameter in truly subquadratic time if $k = \mathcal{O}(1)$, and even in time $\mathcal{O}(km)$ if a corresponding ordering of the vertices in the stable set is given. Again this latter result is optimal under SETH up to polylogarithmic factors.Our findings raise the question whether a $k$-clique interval ordering can always be computed in quasi linear time. We prove that it is the case for $k = 1$ and for some subclasses such as boundedtreewidth split graphs, threshold graphs and comparability split graphs. Finally, we prove thatsome important subclasses of split graphs -- including the ones mentioned above -- have a bounded clique-interval number.


翻译:当我们用准线性时间来计算一个图形的直径时? 我们用一个半线性图表的直径来解决这个问题, 我们观察这个问题是最难确定直径是最多两个的。 我们强调, 虽然一个未完全的分裂图形的直径只能是 2 或 3, 在“ 强烈的指数- 时间假话 (SETH) 下, 我们无法计算一个 $( 美元) 的直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直直直直直直直直直直直直直径直直直直直直直直直直直直直直直直直径直径直直直直直直直直直直直直直径直径直直直直径直直直直直直直直直直径直直直直直直直直径直径直径直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2017年11月20日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Arxiv
0+阅读 · 2021年7月13日
Arxiv
0+阅读 · 2021年7月12日
Arxiv
0+阅读 · 2021年7月12日
VIP会员
相关VIP内容
专知会员服务
17+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2017年11月20日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员