Neural radiance fields, or NeRF, represent a breakthrough in the field of novel view synthesis and 3D modeling of complex scenes from multi-view image collections. Numerous recent works have shown the importance of making NeRF models more robust, by means of regularization, in order to train with possibly inconsistent and/or very sparse data. In this work, we explore how differential geometry can provide elegant regularization tools for robustly training NeRF-like models, which are modified so as to represent continuous and infinitely differentiable functions. In particular, we present a generic framework for regularizing different types of NeRFs observations to improve the performance in challenging conditions. We also show how the same formalism can also be used to natively encourage the regularity of surfaces by means of Gaussian or mean curvatures.


翻译:神经光亮场(NeRF)代表了从多视图图像收藏中对复杂场景进行新颖观点合成和3D建模领域的突破。许多最近的工作表明,通过正规化,使NeRF模型更加稳健,以培训可能不一致和(或)非常稀少的数据。在这项工作中,我们探讨了不同的几何方法如何为强力培训类似NeRF的模型提供优雅的正规化工具,这些模型经过修改,以代表连续和无限不同的功能。特别是,我们提出了一个将不同类型的NERF观测正规化的通用框架,以改善具有挑战性的条件下的性能。我们还展示了如何利用同样的形式主义,通过高斯或中度弯曲法,本地鼓励表面的正常化。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
24+阅读 · 2022年2月4日
VIP会员
相关VIP内容
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员