In this paper, we generalize methods in the Difference in Differences (DiD) literature by showing that both additive and multiplicative standard and coarse Structural Nested Mean Models (Robins, 1994, 1997, 1998, 2000, 2004; Lok and Degruttola, 2012; Vansteelandt and Joffe, 2014) are identified under parallel trends assumptions. Our methodology enables adjustment for time-varying covariates, identification of effect heterogeneity as a function of time-varying covariates, and estimation of treatment effects under a general class of treatment patterns (e.g. we do not restrict to the `staggered adoption' setting). We stress that these extensions come essentially for free, as our parallel trends assumption is not stronger than other parallel trends assumptions in the DiD literature. However, in contrast to much of the DiD literature, we only consider panel data, not repeated cross sectional data.
翻译:在本文中,我们概括了差异差异(DID)文献中的方法,表明在平行趋势假设下确定了各种方法(Robins,1994年、1997年、1998年、2000年、2004年、Lok和Degruttola,2012年;Vansteelandt和Joffe,2014年),我们的方法有助于调整时间变化的共变,确定影响异性是时间变化的共变函数,以及在一般治疗模式下对治疗效果的估计(例如,我们并不局限于“错开采用”的设定),我们强调这些扩展基本上是免费的,因为我们的平行趋势假设并不比DiD文献中的其他平行趋势假设更强,然而,与DiD文献的许多不同,我们只考虑小组数据,而不是重复跨部分数据。