Mobile applications (hereafter, apps) collect a plethora of information regarding the user behavior and his device through third-party analytics libraries. However, the collection and usage of such data raised several privacy concerns, mainly because the end-user - i.e., the actual owner of the data - is out of the loop in this collection process. Also, the existing privacy-enhanced solutions that emerged in the last years follow an "all or nothing" approach, leaving the user the sole option to accept or completely deny the access to privacy-related data. This work has the two-fold objective of assessing the privacy implications on the usage of analytics libraries in mobile apps and proposing a data anonymization methodology that enables a trade-off between the utility and privacy of the collected data and gives the user complete control over the sharing process. To achieve that, we present an empirical privacy assessment on the analytics libraries contained in the 4500 most-used Android apps of the Google Play Store between November 2020 and January 2021. Then, we propose an empowered anonymization methodology, based on MobHide, that gives the end-user complete control over the collection and anonymization process. Finally, we empirically demonstrate the applicability and effectiveness of such anonymization methodology thanks to HideDroid, a fully-fledged anonymization app for the Android ecosystem.


翻译:移动应用程序(以下称“应用程序”)通过第三方分析图书馆收集了大量关于用户行为及其设备的信息(以下称“应用程序”),然而,这些数据的收集和使用引起了若干隐私关切,主要是因为最终用户(即数据的实际所有者)在这一收集过程中已经脱离了循环。此外,过去几年中出现的加强隐私的现有解决方案遵循了“万无一物”的方法,使用户唯一选择是接受或完全拒绝获取与隐私有关的数据。这项工作的双重目标是评估对移动应用程序使用分析图书馆的隐私影响,并提出数据匿名化方法,使所收集的数据在效用和隐私之间实现交换,并使用户完全控制共享过程。为了实现这一点,我们对谷歌游戏商店4500个最常用的机器人应用程序(即2020年11月至2021年1月)中所含的分析图书馆进行了实证隐私权评估。然后,我们提出了基于MobHide应用程序的增强匿名图书馆使用权的匿名化方法,并提出了数据匿名化方法,使所收集数据的效用与隐私之间能够进行交换,从而充分展示了最终用户系统化的系统化。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
【斯坦福Jiaxuan You】图学习在金融网络中的应用,24页ppt
专知会员服务
43+阅读 · 2021年9月19日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
【推荐】手把手深度学习模型部署指南
机器学习研究会
5+阅读 · 2018年1月23日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Arxiv
0+阅读 · 2022年1月10日
Privacy-Preserving News Recommendation Model Learning
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
【推荐】手把手深度学习模型部署指南
机器学习研究会
5+阅读 · 2018年1月23日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Top
微信扫码咨询专知VIP会员