Multi-phase computed tomography (CT) images provide crucial complementary information for accurate liver tumor segmentation (LiTS). State-of-the-art multi-phase LiTS methods usually fused cross-phase features through phase-weighted summation or channel-attention based concatenation. However, these methods ignored the spatial (pixel-wise) relationships between different phases, hence leading to insufficient feature integration. In addition, the performance of existing methods remains subject to the uncertainty in segmentation, which is particularly acute in tumor boundary regions. In this work, we propose a novel LiTS method to adequately aggregate multi-phase information and refine uncertain region segmentation. To this end, we introduce a spatial aggregation module (SAM), which encourages per-pixel interactions between different phases, to make full use of cross-phase information. Moreover, we devise an uncertain region inpainting module (URIM) to refine uncertain pixels using neighboring discriminative features. Experiments on an in-house multi-phase CT dataset of focal liver lesions (MPCT-FLLs) demonstrate that our method achieves promising liver tumor segmentation and outperforms state-of-the-arts.
翻译:多阶段计算断层图象为准确的肝肿瘤分块(Lits)提供了关键的补充信息。 最新的多阶段利TS 方法通常通过分量加权加和或频道关注调解,结合跨阶段特征。但是,这些方法忽视了不同阶段之间的空间(像素-)关系,从而导致特征整合不足。此外,现有方法的性能仍然受制于分块的不确定性,在肿瘤边界区域特别尖锐。在这项工作中,我们提出一种新的利TS 方法,以充分综合多阶段信息并完善不确定的区域分块。为此,我们引入了空间集成模块(SAM),鼓励不同阶段之间的每像素互动,充分利用跨阶段信息。此外,我们设计了一个不确定的区域插入模块(URIM),以利用相邻的歧视性特征改进不确定的像素。对内部多阶段肝脏损伤(MPCT-FLs)数据集的实验表明,我们的方法实现了有希望的肝癌分块和外形。