Synaptic plasticity allows cortical circuits to learn new tasks and to adapt to changing environments. How do cortical circuits use plasticity to acquire functions such as decision-making or working memory? Neurons are connected in complex ways, forming recurrent neural networks, and learning modifies the strength of their connections. Moreover, neurons communicate emitting brief discrete electric signals. Here we describe how to train recurrent neural networks in tasks like those used to train animals in neuroscience laboratories, and how computations emerge in the trained networks. Surprisingly, artificial networks and real brains can use similar computational strategies.
翻译:同步可塑性允许皮层电路学习新任务并适应不断变化的环境。 皮层电路如何使用塑料获取决策或工作记忆等功能? 神经元以复杂的方式连接,形成经常性神经网络,学习改变其连接的强度。 此外,神经元传递发出短距离离散电信号。 我们在这里描述如何对经常性神经网络进行诸如神经科学实验室用于培训动物的任务的培训,以及如何在经过培训的网络中进行计算。 令人惊讶的是,人造网络和真正的大脑可以使用类似的计算策略。