The applications of Artificial Intelligence (AI) methods especially machine learning techniques have increased in recent years. Classification algorithms have been successfully applied to different problems such as requirement classification. Although these algorithms have good performance, most of them cannot explain how they make a decision. Explainable Artificial Intelligence (XAI) is a set of new techniques that explain the predictions of machine learning algorithms. In this work, the applicability of XAI for software requirement classification is studied. An explainable software requirement classifier is presented using the LIME algorithm. The explainability of the proposed method is studied by applying it to the PROMISE software requirement dataset. The results show that XAI can help the analyst or requirement specifier to better understand why a specific requirement is classified as functional or non-functional. The important keywords for such decisions are identified and analyzed in detail. The experimental study shows that the XAI can be used to help analysts and requirement specifiers to better understand the predictions of the classifiers for categorizing software requirements. Also, the effect of the XAI on feature reduction is analyzed. The results showed that the XAI model has a positive role in feature analysis.


翻译:近年来,人工智能(AI)方法的应用,特别是机器学习技术的应用有所增加。分类算法成功地应用于不同问题,如要求分类等。虽然这些算法表现良好,但大多数无法解释它们是如何作出决定的。可解释的人工智能(XAI)是一套解释机器学习算法预测的新技术。在这项工作中,研究了XAI对软件要求分类的适用性。使用LIME算法提出了可解释的软件要求分类法。通过将拟议方法应用于PROMISIE软件要求数据集来研究该方法的可解释性。结果显示,XAI可以帮助分析者或要求说明者更好地了解为什么某项具体要求被归类为功能性或非功能性。这些决定的重要关键词得到了详细的确定和分析。实验研究表明,XAI可以用来帮助分析者和要求分解者更好地了解分类软件要求的预测。此外,XAI对特性缩减的影响也得到了分析。结果表明,XAI模型在特征分析中具有积极的作用。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
29+阅读 · 2022年2月15日
A Survey on Edge Intelligence
Arxiv
49+阅读 · 2020年3月26日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员