Work on hate speech has made the consideration of rude and harmful examples in scientific publications inevitable. This raises various problems, such as whether or not to obscure profanities. While science must accurately disclose what it does, the unwarranted spread of hate speech is harmful to readers, and increases its internet frequency. While maintaining publications' professional appearance, obfuscating profanities makes it challenging to evaluate the content, especially for non-native speakers. Surveying 150 ACL papers, we discovered that obfuscation is usually employed for English but not other languages, and even so quite uneven. We discuss the problems with obfuscation and suggest a multilingual community resource called PrOf that has a Python module to standardize profanity obfuscation processes. We believe PrOf can help scientific publication policies to make hate speech work accessible and comparable, irrespective of language.
翻译:有关仇恨言论的工作使得科学出版物中粗鲁和有害的例子的考虑不可避免,这引起了各种问题,例如是否要掩盖亵渎行为。科学必须准确披露其所作所为。虽然科学必须准确披露其所作所为,但无端传播仇恨言论对读者有害,并增加其互联网频率。在保持出版物的专业外观的同时,模糊的亵渎行为使得评估内容、特别是非母语发言人的内容具有挑战性。调查150份ACL文件后,我们发现混淆通常用于英语,而不是其他语言,甚至非常不均匀。我们讨论了与混淆有关的问题,并建议建立一个名为Prof的多语种社区资源,该社区资源将Python模块用于规范亵渎言论过程的标准化。我们相信Prof可以帮助科学出版政策使仇恨言论工作便于使用和可比,而不论语言如何。