To address the rising demand for strong packet delivery guarantees in networking, we study a novel way to perform graph resource allocation. We first introduce allocation graphs, in which nodes can independently set local resource limits based on physical constraints or policy decisions. In this scenario we formalize the distributed path-allocation (PAdist) problem, which consists in allocating resources to paths considering only local on-path information -- importantly, not knowing which other paths could have an allocation -- while at the same time achieving the global property of never exceeding available resources. Our core contribution, the global myopic allocation (GMA) algorithm, is a solution to this problem. We prove that GMA can compute unconditional allocations for all paths on a graph, while never over-allocating resources. Further, we prove that GMA is Pareto optimal with respect to the allocation size, and it has linear complexity in the input size. Finally, we show with simulations that this theoretical result could be indeed applied to practical scenarios, as the resulting path allocations are large enough to fit the requirements of practically relevant applications.


翻译:为解决网络中对强大包装交付保障日益增长的需求,我们研究一种新的方法来实施图表资源分配。我们首先引入分配图,让节点能够根据实际限制或政策决定独立设定当地资源限制。在这种假设中,我们正式确定分配路径分配(Padist)问题,包括将资源分配给只考虑当地直接信息的道路 -- -- 重要的是,不知道哪些其他路径可以分配 -- -- 同时实现从未超过现有资源的全球属性。我们的核心贡献,即全球近似分配算法(GMA),是解决这个问题的解决方案。我们证明,GMA可以无条件计算图表上所有路径的分配,而不会过度分配资源。此外,我们证明,全球分配路径分配对于分配规模而言是最佳的,而且输入规模也具有线性的复杂性。最后,我们用模拟来证明,这一理论结果可以真正应用于实际情景,因为由此得出的路径分配量足以满足实际相关应用的要求。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
已删除
将门创投
7+阅读 · 2019年3月28日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年4月13日
Arxiv
0+阅读 · 2021年4月11日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
已删除
将门创投
7+阅读 · 2019年3月28日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员