We consider the problem of minimizing the makespan on batch processing identical machines, subject to compatibility constraints, where two jobs are compatible if they can be processed simultaneously in a same batch. These constraints are modeled by an undirected graph $G$, in which compatible jobs are represented by adjacent vertices. We show that several subproblems are polynomial. We propose some exact polynomial algorithms to solve these subproblems. To solve the general case, we propose a mixed-integer linear programming (MILP) formulation alongside with heuristic approaches. Furthermore, computational experiments are carried out to measure the performance of the proposed methods.
翻译:暂无翻译