We present practical approaches of using deep learning to create and enhance level maps and textures for video games -- desktop, mobile, and web. We aim to present new possibilities for game developers and level artists. The task of designing levels and filling them with details is challenging. It is both time-consuming and takes effort to make levels rich, complex, and with a feeling of being natural. Fortunately, recent progress in deep learning provides new tools to accompany level designers and visual artists. Moreover, they offer a way to generate infinite worlds for game replayability and adjust educational games to players' needs. We present seven approaches to create level maps, each using statistical methods, machine learning, or deep learning. In particular, we include: - Generative Adversarial Networks for creating new images from existing examples (e.g. ProGAN). - Super-resolution techniques for upscaling images while preserving crisp detail (e.g. ESRGAN). - Neural style transfer for changing visual themes. - Image translation - turning semantic maps into images (e.g. GauGAN). - Semantic segmentation for turning images into semantic masks (e.g. U-Net). - Unsupervised semantic segmentation for extracting semantic features (e.g. Tile2Vec). - Texture synthesis - creating large patterns based on a smaller sample (e.g. InGAN).
翻译:我们提出了利用深层次学习来创建和提升水平地图和视频游戏(桌面、移动和网络)纹理的实用方法。 我们的目标是为游戏开发者和高级艺术家提供新的可能性。 设计层次和填充细节的任务具有挑战性。 它既耗时,又需要努力使层次丰富、复杂和自然感。 幸运的是, 深层次学习的最近进展为级别设计者和视觉艺术家提供了新的工具。 此外, 深层次学习提供了为游戏再播放和调整教育游戏以适应玩家需要而创造无限世界的方法。 我们提出了七个方法来创建水平地图, 每一个都使用统计方法、 机器学习或深层次学习。 我们特别包括: - 创造层次和填充细节的虚拟Aversarial网络(例如 ProGAN) 。 - 提升图像的超分辨率技术,同时保存精确细节( 如 ESRGANAN) 。 - 用于改变视觉主题的神经样式转换。 - 图像翻译 - 将语系样本地图转换成图像( 如 GaugGAGAANAN ) 。 - 用于将图像转换成磁带图像(例如 ) 。