We present practical approaches of using deep learning to create and enhance level maps and textures for video games -- desktop, mobile, and web. We aim to present new possibilities for game developers and level artists. The task of designing levels and filling them with details is challenging. It is both time-consuming and takes effort to make levels rich, complex, and with a feeling of being natural. Fortunately, recent progress in deep learning provides new tools to accompany level designers and visual artists. Moreover, they offer a way to generate infinite worlds for game replayability and adjust educational games to players' needs. We present seven approaches to create level maps, each using statistical methods, machine learning, or deep learning. In particular, we include: - Generative Adversarial Networks for creating new images from existing examples (e.g. ProGAN). - Super-resolution techniques for upscaling images while preserving crisp detail (e.g. ESRGAN). - Neural style transfer for changing visual themes. - Image translation - turning semantic maps into images (e.g. GauGAN). - Semantic segmentation for turning images into semantic masks (e.g. U-Net). - Unsupervised semantic segmentation for extracting semantic features (e.g. Tile2Vec). - Texture synthesis - creating large patterns based on a smaller sample (e.g. InGAN).


翻译:我们提出了利用深层次学习来创建和提升水平地图和视频游戏(桌面、移动和网络)纹理的实用方法。 我们的目标是为游戏开发者和高级艺术家提供新的可能性。 设计层次和填充细节的任务具有挑战性。 它既耗时,又需要努力使层次丰富、复杂和自然感。 幸运的是, 深层次学习的最近进展为级别设计者和视觉艺术家提供了新的工具。 此外, 深层次学习提供了为游戏再播放和调整教育游戏以适应玩家需要而创造无限世界的方法。 我们提出了七个方法来创建水平地图, 每一个都使用统计方法、 机器学习或深层次学习。 我们特别包括: - 创造层次和填充细节的虚拟Aversarial网络(例如 ProGAN) 。 - 提升图像的超分辨率技术,同时保存精确细节( 如 ESRGANAN) 。 - 用于改变视觉主题的神经样式转换。 - 图像翻译 - 将语系样本地图转换成图像( 如 GaugGAGAANAN ) 。 - 用于将图像转换成磁带图像(例如 ) 。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
深度学习界圣经“花书”《Deep Learning》中文版来了
专知会员服务
233+阅读 · 2019年10月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
12+阅读 · 2020年8月3日
Deep learning for cardiac image segmentation: A review
Arxiv
21+阅读 · 2019年11月9日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
Arxiv
3+阅读 · 2018年4月10日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员