Neural network pruning compresses automatic speech recognition (ASR) models effectively. However, in multilingual ASR, language-agnostic pruning may lead to severe performance drops on some languages because language-agnostic pruning masks may not fit all languages and discard important language-specific parameters. In this work, we present ASR pathways, a sparse multilingual ASR model that activates language-specific sub-networks ("pathways"), such that the parameters for each language are learned explicitly. With the overlapping sub-networks, the shared parameters can also enable knowledge transfer for lower-resource languages via joint multilingual training. We propose a novel algorithm to learn ASR pathways, and evaluate the proposed method on 4 languages with a streaming RNN-T model. Our proposed ASR pathways outperform both dense models and a language-agnostically pruned model, and provide better performance on low-resource languages compared to the monolingual sparse models.
翻译:神经网络运行压缩压缩器自动语音识别(ASR)模型。然而,在多种语言的ASR中,语言不可知性读写功能可能会导致某些语言表现严重下降,因为语言不可知性读写面罩可能不符合所有语言,并抛弃了重要的语言特有参数。在这项工作中,我们展示了ASR路径,这是一种稀疏的多语种ASR模式,可以启动语言专用子网络(“路径 ” ),从而明确了解每种语言的参数。在相互重叠的子网络中,共享参数还可以通过联合多语种培训,为低资源语言提供知识转让。我们提出了一个小的算法来学习ASR路径,用流流式RNN-T模型评估4种语言的拟议方法。我们提议的ASR路径超越了密集模式和语言敏感型小模式,并且比单一语言稀有模式在低资源语言上提供更好的表现。