Fairness across different demographic groups is an essential criterion for face-related tasks, Face Attribute Classification (FAC) being a prominent example. Apart from this trend, Federated Learning (FL) is increasingly gaining traction as a scalable paradigm for distributed training. Existing FL approaches require data homogeneity to ensure fairness. However, this assumption is too restrictive in real-world settings. We propose F3, a novel FL framework for fair FAC under data heterogeneity. F3 adopts multiple heuristics to improve fairness across different demographic groups without requiring data homogeneity assumption. We demonstrate the efficacy of F3 by reporting empirically observed fairness measures and accuracy guarantees on popular face datasets. Our results suggest that F3 strikes a practical balance between accuracy and fairness for FAC.


翻译:不同人口群体之间的公平性是面对面任务的基本标准,《脸属性分类》是一个突出的例子。除了这一趋势外,联邦学习组织(FL)正日益获得牵引,成为分布式培训的可扩展范例。现有的FL方法要求数据同质性以确保公平性。然而,这一假设在现实世界环境中限制性太强。我们提议F3在数据差异性下为公平的FC提出一个新的FL框架。F3采用多种惯性来改善不同人口群体之间的公平性,而无需数据同质性假设。我们通过报告经验上观察到的公平性措施和大众脸数据集的准确性保障,来证明F3的效力。我们的结果表明F3在对FC的准确性和公平性实现实际平衡。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月15日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员