A major challenge in single-particle cryo-electron microscopy (cryo-EM) is that the orientations adopted by the 3D particles prior to imaging are unknown; yet, this knowledge is essential for high-resolution reconstruction. We present a method to recover these orientations directly from the acquired set of 2D projections. Our approach consists of two steps: (i) the estimation of distances between pairs of projections, and (ii) the recovery of the orientation of each projection from these distances. In step (i), pairwise distances are estimated by a Siamese neural network trained on synthetic cryo-EM projections from resolved bio-structures. In step (ii), orientations are recovered by minimizing the difference between the distances estimated from the projections and the distances induced by the recovered orientations. We evaluated the method on synthetic cryo-EM datasets. Current results demonstrate that orientations can be accurately recovered from projections that are shifted and corrupted with a high level of noise. The accuracy of the recovery depends on the accuracy of the distance estimator. While not yet deployed in a real experimental setup, the proposed method offers a novel learning-based take on orientation recovery in SPA. Our code is available at https://github.com/JelenaBanjac/protein-reconstruction


翻译:单粒冷冻-电子显微镜(cryo-EM)的一个主要挑战是,3D粒子在成像前采用的方向不明;然而,这种知识对于高分辨率重建至关重要。我们提出一种直接从获得的2D预测组合中恢复这些方向的方法。我们的方法包括两个步骤:(一) 估计预测对数之间的距离,和(二) 从这些距离中恢复每一投影的方向。在步骤(一) 中,由接受过来自已解决生物结构的合成冷冻-EM预测培训的Siames神经网络估计双向距离。在步骤(二)中,通过尽可能缩小预测估计距离与回收方向所引致距离之间的距离差异来恢复方向。我们评估合成冷冻-EM数据集的方法有两个步骤:(一) 估计预测对两对相的距离,以及(二) 从这些距离中恢复方向的正确性。在步骤(一)中,复原的准确性取决于测距仪的准确性。虽然尚未在实际试验设置中部署,但拟议的方法提供了从预测中估计的距离与从预测所估计的距离到所恢复方向。我们数据库/在数据库中可以进行新的学习。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
146+阅读 · 2019年10月27日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
“CVPR 2020 接受论文列表 1470篇论文都在这了
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月2日
VIP会员
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员