Network slicing and resource allocation play pivotal roles in software-defined network (SDN)/network function virtualization (NFV)-assisted 5G networks. In 5G communications, the traffic rate is high, necessitating high data rates and low latency. Deep learning is a potential solution for overcoming these constraints. Secure slicing avoids resource wastage; however, DDoS attackers can exploit the sliced network. Therefore, we focused on secure slicing with resource allocation under massive network traffic. Traffic-aware scheduling is proposed for secure slicing and resource allocation over SDN/NFV-enabled 5G networks. In this approach (T-S3RA), user devices are authenticated using Boolean logic with a password-based key derivation function. The traffic is scheduled in 5G access points, and secure network slicing and resource allocation are implemented using deep learning models such as SliceNet and HopFieldNet, respectively. To predict DDoS attackers, we computed the Renyi entropy for packet classification. Experiments were conducted using a network simulator with 250 nodes in the network topology. Performance was evaluated using metrics such as throughput, latency, packet transmission ratio, packet loss ratio, slice capacity, bandwidth consumption, and slice acceptance ratio. T-S3RA was implemented in three 5G use cases with different requirements including massive machine-type communication, ultrareliable low-latency communication, and enhanced mobile broadband.
翻译:在软件定义的网络(SDN)/网络功能虚拟化(NFV)辅助的5G网络中,网络断层和资源分配发挥着关键作用。在5G通信中,流量率很高,需要高数据率和低潜值。深层学习是克服这些限制的一个潜在解决办法。安全切片避免资源浪费;但是,DDoS袭击者可以分别利用割裂的网络。因此,我们的重点是安全切片,在大规模网络交通中分配资源。建议为SDN/NFV驱动的5G网络的安全切片和资源分配安排交通通识时间。在这种方法(T-S3RA)中,用户装置使用基于密码的逻辑进行认证,并使用基于密码的关键衍生功能。 深层学习模型,如SlisteNet和Hop FieldNet, 安全切片网络。为了预测DDoS袭击者,我们计算Renyi Intropopy 分类,我们利用网络模拟器进行实验,在网络上250个零位/NFNFDLV驱动的5G比率中, 使用了业绩-S型服务器传输能力,在网络上进行了评估,在网络上采用了3号系统切缩缩缩缩缩变换。在T中,在使用这种变换式的版本中,在使用了SBMFM-Risldalmmmmmmmmlation-commldalvimbildalvicisxxxxx