This paper investigates the problem of joint massive devices separation and channel estimation for a reconfigurable intelligent surface (RIS)-aided unsourced random access (URA) scheme in the sixth-generation (6G) wireless networks. In particular, by associating the data sequences to a rank-one tensor and exploiting the angular sparsity of the channel, the detection problem is cast as a high-order coupled tensor decomposition problem. However, the coupling among multiple devices to RIS (device-RIS) channels together with their sparse structure make the problem intractable. By devising novel priors to incorporate problem structures, we design a novel probabilistic model to capture both the element-wise sparsity from the angular channel model and the low rank property due to the sporadic nature of URA. Based on the this probabilistic model, we develop a coupled tensor-based automatic detection (CTAD) algorithm under the framework of variational inference with fast convergence and low computational complexity. Moreover, the proposed algorithm can automatically learn the number of active devices and thus effectively avoid noise overfitting. Extensive simulation results confirm the effectiveness and improvements of the proposed URA algorithm in large-scale RIS regime.


翻译:本文调查了第六代(6G)无线网络中可重新配置智能表面(RIS)辅助的无源随机访问(URA)计划的联合大规模装置分离和频道估计问题,特别是将数据序列与一阶强相连接,利用该频道的角宽度,发现问题被描绘成一个高阶和高压分解问题,然而,多种装置与RIS(devi-RIS)频道的混合,加上其稀疏结构,使得问题难以解决。我们设计了新的前科,以纳入问题结构,我们设计了一个新的概率模型,以捕捉角通道模型中的元素偏移和由于URA的零星性质造成的低级属性。我们根据这一概率模型,在变异推框架以及快速趋同和低计算复杂性下,开发了一种同时以抗震动为基础的自动检测算法。此外,拟议的算法可以自动学习主动装置的数量,从而有效地避免噪音过大。广泛的IRA模拟结果证实了拟议的大规模系统系统分析法的有效性和改进。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
【干货书】贝叶斯推断随机过程,449页pdf
专知会员服务
150+阅读 · 2020年8月27日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
5+阅读 · 2021年2月15日
Learning to See Through Obstructions
Arxiv
7+阅读 · 2020年4月2日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员