Non-malleable-codes introduced by Dziembowski, Pietrzak and Wichs [DPW18] encode a classical message $S$ in a manner such that tampering the codeword results in the decoder either outputting the original message $S$ or a message that is unrelated/independent of $S$. Providing such non-malleable security for various tampering function families has received significant attention in recent years. We consider the well-studied (2-part) split-state model, in which the message $S$ is encoded into two parts $X$ and $Y$, and the adversary is allowed to arbitrarily tamper with each $X$ and $Y$ individually. We consider the security of non-malleable-codes in the split-state model when the adversary is allowed to make use of arbitrary entanglement to tamper the parts $X$ and $Y$. We construct explicit quantum secure non-malleable-codes in the split-state model. Our construction of quantum secure non-malleable-codes is based on the recent construction of quantum secure $2$-source non-malleable-extractors by Boddu, Jain and Kapshikar [BJK21].
翻译:Dziembowski、Pietrzak 和 Wichs [DPW18] 将古典电文[DPW18] 编码成美元,从而篡改编码导致代码解码器或者输出原始电文$S$,或者一个不相干/不依赖美元的信息。近年来,为各种篡改功能家庭提供这种不可调和的保安受到极大关注。我们认为,经过仔细研究的(2部分)分裂式国家代码,其中S$被编码成两部分X$和Y$,并且允许对手任意篡改每一部分X$和Y$。当敌人被允许利用任意纠缠来篡改部分X$和Y$时,我们考虑分离式模式中非腐败代码的安全性。我们在分裂式国家模型中建立明确的量度安全型号(2部分-部分-美元-美元-美元-美元-美元-美元-美元-美元-美元-电解码。我们制作的不可调制加密不可调制代码的基础是最近建造的量制安全型、21美元-纸质-金-非金-金-金-美元-金-金-金-金-金-金-金-金-金-金-金-金-金-金-金-金-金-金-金-金-金-金-金-金-金-金-金-金-金-制-金-金-金-制-金-金-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-制-