项目名称: 生物网络动力学中非平衡态理论的若干研究

项目编号: No.11304115

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 徐留芳

作者单位: 吉林大学

项目金额: 25万元

中文摘要: 生命的奥秘吸引着越来越多的数理学家参与到系统生物学前沿领域的研究中。研究者认为,细胞是一个充满随机噪声和强烈涨落的多层次的有序结构,细胞中的生化反应体系可看作远离平衡态的系统。通过建立适用于非线性非平衡态系统的随机热力学理论,并将其应用于对生物网络功能模块的研究,研究者不断揭示出存在于生物网络中的普适性设计原理,进而探索生命的本质。本项目以基因调控网络中的自反馈回路和信号转导通路中的磷酸化-去磷酸化环路、若干典型的三节点相互作用网络结构以及实际生物网络中的噪声影响和作用等为研究对象,计划从生化反应的随机概率描述- - 含体积参数的化学反应主方程出发,通过模拟计算生化反应系统的有效势景观和稳态概率流,来解决生物网络功能模块的全局稳定性、非平衡相变等动力学问题,进而分析噪声在执行生物学功能中的影响和作用。

中文关键词: 基因调控;催化式小RNA;概率流;非平衡相变;

英文摘要: More and more mathematicians and physicists are drawn into researching system biology, the frontier of biology, to uncover the secret of life. They found that biochemical reactions in the cells are involved in the environment which is full of large fluctuations and stochastic noise. They established the theory framework of stochastic thermodynamics by introducing the stochastic theory into the nonlinear and non-equilibrium physics. By applying the stochastic thermodynamics theory into the research on biological network modules, researchers find the general design principles of biological networks and they believe they are on the way to describing the essence of life. This project focuses on the research of self-regulated gene networks as well as phosphorylation-dephosphorylation cycles, three node network topologies and the role of noise in the actual biological networks. We plan to start from the volume-independent chemical master equation (VCME), to simulate the effective potential landscape of the biochemical systems in non-equilibrium steady state (NESS) and to calculate the stationary non-zero probabilistic flux. We tend to study the global characteristics of the biological functional modules, such as global stability, phase transition of NESS and so on, and analyze the influence and the role of stochastic

英文关键词: Gene regulation;Catalytic-sRNA;Probability flux;Non-equilibrium phase transition;

成为VIP会员查看完整内容
0

相关内容

【TPAMI2022】双曲深度神经网络研究综述
专知会员服务
65+阅读 · 2021年12月29日
【经典书】随机矩阵理论与无线网络,186和pdf
专知会员服务
49+阅读 · 2021年12月21日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
48+阅读 · 2021年8月4日
专知会员服务
24+阅读 · 2021年6月9日
【经典书】图理论与复杂网络导论,287页pdf
专知会员服务
133+阅读 · 2021年3月5日
专知会员服务
15+阅读 · 2021年3月4日
机器直觉
专知会员服务
26+阅读 · 2020年11月22日
专知会员服务
45+阅读 · 2020年11月13日
专知会员服务
49+阅读 · 2020年8月27日
自动化所团队揭示多尺度动态编码,助力脉冲网络实现高效强化学习
中国科学院自动化研究所
0+阅读 · 2021年12月13日
卷积神经网络数学原理解析
极市平台
1+阅读 · 2021年11月19日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
The Importance of Credo in Multiagent Learning
Arxiv
1+阅读 · 2022年4月15日
Arxiv
10+阅读 · 2020年6月12日
Arxiv
16+阅读 · 2020年5月20日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
小贴士
相关主题
相关VIP内容
【TPAMI2022】双曲深度神经网络研究综述
专知会员服务
65+阅读 · 2021年12月29日
【经典书】随机矩阵理论与无线网络,186和pdf
专知会员服务
49+阅读 · 2021年12月21日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
48+阅读 · 2021年8月4日
专知会员服务
24+阅读 · 2021年6月9日
【经典书】图理论与复杂网络导论,287页pdf
专知会员服务
133+阅读 · 2021年3月5日
专知会员服务
15+阅读 · 2021年3月4日
机器直觉
专知会员服务
26+阅读 · 2020年11月22日
专知会员服务
45+阅读 · 2020年11月13日
专知会员服务
49+阅读 · 2020年8月27日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
微信扫码咨询专知VIP会员