The solution of multistage stochastic linear problems (MSLP) represents a challenge for many applications. Long-term hydrothermal dispatch planning (LHDP) materializes this challenge in a real-world problem that affects electricity markets, economies, and natural resources worldwide. No closed-form solutions are available for MSLP and the definition of non-anticipative policies with high-quality out-of-sample performance is crucial. Linear decision rules (LDR) provide an interesting simulation-based framework for finding high-quality policies to MSLP through two-stage stochastic models. In practical applications, however, the number of parameters to be estimated when using an LDR may be close or higher than the number of scenarios, thereby generating an in-sample overfit and poor performances in out-of-sample simulations. In this paper, we propose a novel regularization scheme for LDR based on the AdaLASSO (adaptive least absolute shrinkage and selection operator). The goal is to use the parsimony principle as largely studied in high-dimensional linear regression models to obtain better out-of-sample performance for an LDR applied to MSLP. Computational experiments show that the overfit threat is non-negligible when using the classical non-regularized LDR to solve MSLP. For the LHDP problem, our analysis highlights the following benefits of the proposed framework in comparison to the non-regularized benchmark: 1) significant reductions in the number of non-zero coefficients (model parsimony), 2) substantial cost reductions in out-of-sample evaluations, and 3) improved spot-price profiles.
翻译:多阶段随机线性问题的解决方案(MSLP)是许多应用中的一项挑战。长期热液发送规划(LHDP)在影响全球电力市场、经济和自然资源的现实世界问题中实现了这项挑战。对于MSLP来说,没有封闭式的解决方案,而且以高质量外表性能为非预测性政策定义至关重要。线性决定规则(LDR)提供了一个有趣的模拟框架,通过两阶段随机化模型为MSLP找到高质量政策。但在实际应用中,使用LDR时估计的参数数量可能接近或高于对全世界电力市场、经济和自然资源的现实问题。对于MSLPDR来说,在模拟中,不贴近和不贴现的参数数量,在SDRMFR模型中,在不贴近的模型中,将SDRFS-S-RODS-S-S-RDR IMF IMR-R-RML IML IML-S-RDRL IML IML-S-SL IML IML IML IML-SL IML IML IML IML IML IML IML IMAL IML IML IMAL IML IML IML IML IMD IMS-S IML IML IML IML IML IMS IM IMS IML IM IM IM IMS IM IM IMS IMS IM IM IM IM IML IML IML IML IML IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM