As the increase in satellite number and variety, satellite ground stations should be required to offer user services in a flexible and efficient manner. Network function virtualization (NFV) can provide a new paradigm to allocate network resources on demand for user services over the underlying network. However, most of the existing work focuses on virtual network function (VNF) placement and routing traffic problem for enterprise data center networks, the issue needs to further study in satellite communication scenarios. In this paper, we investigate the VNF placement and routing traffic problem in satellite ground station networks. We formulate the problem of resource allocation as an integer linear programming (ILP) model and the objective is to minimize the link resource utilization and the number of servers used. Considering the information about satellite orbit fixation and mission planning, we propose location-aware resource allocation (LARA) algorithms based on Greedy and IBM CPLEX 12.10, respectively. The proposed LARA algorithm can assist in deploying VNFs and routing traffic flows by predicting the running conditions of user services. We evaluate the performance of our proposed LARA algorithm in three networks of Fat-Tree, BCube, and VL2. Simulation results show that our proposed LARA algorithm performs better than that without prediction, and can effectively decrease the average resource utilization of satellite ground station networks.


翻译:随着卫星数量和种类的增加,卫星地面站应被要求以灵活、高效的方式提供用户服务。网络功能虚拟化(NFV)可以提供一个新的范例,根据对基础网络用户服务的需求分配网络资源;然而,大多数现有工作侧重于企业数据中心网络虚拟网络功能(VNF)的定位和路由交通问题,这一问题需要在卫星通信设想中进一步研究。在本文件中,我们调查卫星地面站网络的VNF位置和路线交通问题。我们把资源分配问题作为整线线性编程(ILP)模式,目标是最大限度地减少链接资源利用和所使用服务器的数量。考虑到卫星轨道固定和飞行任务规划方面的信息,我们建议分别根据Greedy和IBM CPLEX 12.10的定位和路线分配资源。拟议的LARA算法可以通过预测用户服务的运行条件,协助部署VNFS和路线交通流量。我们提出的LARA算法算法在三个网络、BCUB、和VLAR2卫星地面算法的利用情况,可以有效地显示我们提议的LA-Tre、Bube和VL资源平均利用地面网络的预测结果。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2020年11月29日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员