Understanding reactor-pressure-vessel steel microstructure is crucial for predicting mechanical properties, as carbide precipitates both strengthen the alloy and can initiate cracks. In scanning electron microscopy images, gray-value overlap between carbides and matrix makes simple thresholding ineffective. We present a data-efficient segmentation pipeline using a lightweight U-Net (30.7~M parameters) trained on just \textbf{10 annotated scanning electron microscopy images}. Despite limited data, our model achieves a \textbf{Dice-Sørensen coefficient of 0.98}, significantly outperforming the state-of-the-art in the field of metallurgy (classical image analysis: 0.85), while reducing annotation effort by one order of magnitude compared to the state-of-the-art data efficient segmentation model. This approach enables rapid, automated carbide quantification for alloy design and generalizes to other steel types, demonstrating the potential of data-efficient deep learning in reactor-pressure-vessel steel analysis.
翻译:理解反应堆压力容器钢的微观结构对于预测其力学性能至关重要,因为碳化物析出物既能强化合金,也可能引发裂纹。在扫描电子显微镜图像中,碳化物与基体之间的灰度值重叠使得简单的阈值分割方法失效。我们提出了一种数据高效的分割流程,采用轻量级U-Net(参数量为30.7M),仅使用**10张标注的扫描电子显微镜图像**进行训练。尽管数据有限,我们的模型实现了**Dice-Sørensen系数0.98**,显著优于冶金领域的现有最佳方法(经典图像分析:0.85),同时与当前数据高效分割模型相比,标注工作量减少了一个数量级。该方法能够实现快速、自动化的碳化物定量分析,适用于合金设计,并可推广至其他钢种,展示了数据高效深度学习在反应堆压力容器钢分析中的潜力。