Recommender systems in multi-behavior domains, such as advertising and e-commerce, aim to guide users toward high-value but inherently sparse conversions. Leveraging auxiliary behaviors (e.g., clicks, likes, shares) is therefore essential. Recent progress on generative recommendations has brought new possibilities for multi-behavior sequential recommendation. However, existing generative approaches face two significant challenges: 1) Inadequate Sequence Modeling: capture the complex, cross-level dependencies within user behavior sequences, and 2) Lack of Suitable Datasets: publicly available multi-behavior recommendation datasets are almost exclusively derived from e-commerce platforms, limiting the validation of feasibility in other domains, while also lacking sufficient side information for semantic ID generation. To address these issues, we propose a novel generative framework, GAMER (Generative Augmentation and Multi-lEvel behavior modeling for Recommendation), built upon a decoder-only backbone. GAMER introduces a cross-level interaction layer to capture hierarchical dependencies among behaviors and a sequential augmentation strategy that enhances robustness in training. To further advance this direction, we collect and release ShortVideoAD, a large-scale multi-behavior dataset from a mainstream short-video platform, which differs fundamentally from existing e-commerce datasets and provides pretrained semantic IDs for research on generative methods. Extensive experiments show that GAMER consistently outperforms both discriminative and generative baselines across multiple metrics.
翻译:在广告和电子商务等多行为领域的推荐系统中,其目标在于引导用户完成高价值但本质上稀疏的转化行为。因此,利用辅助行为(如点击、点赞、分享)至关重要。生成式推荐的最新进展为多行为序列推荐带来了新的可能性。然而,现有的生成式方法面临两大挑战:1) 序列建模不足:难以捕捉用户行为序列中复杂的跨层级依赖关系;2) 缺乏合适的数据集:公开可用的多行为推荐数据集几乎全部源自电子商务平台,这限制了在其他领域验证其可行性,同时也缺乏足够的辅助信息用于语义ID生成。为解决这些问题,我们提出了一种新颖的生成式框架GAMER(用于推荐的生成式增强与多层级行为建模),该框架基于仅解码器主干构建。GAMER引入了跨层级交互层以捕捉行为间的分层依赖关系,以及一种序列增强策略以提升训练鲁棒性。为进一步推动该方向的发展,我们收集并发布了ShortVideoAD,这是一个来自主流短视频平台的大规模多行为数据集,其与现有的电子商务数据集存在根本性差异,并为生成式方法研究提供了预训练的语义ID。大量实验表明,GAMER在多项指标上均持续优于判别式和生成式基线方法。