Experience of live video streaming can be improved if future available bandwidth can be predicted more accurately at the video uploader side. Thus follows a natural question which is how to make predictions both easily and precisely in an ever-changing network. Researchers have developed many prediction algorithms in the literature, from where a simple algorithm, Arithmetic Mean (AM), stands out. Based on that, we are purposing a new method called Empirical Conditional Method (ECM) based on a Markov model, hoping to utilize more information in the past data to get a more accurate prediction without loss of practicality. Through simulations, we found that our ECM algorithm performs better than the commonly used AM one, in the sense of reducing the loss by about 10% compared with AM. Besides, ECM also has a higher utilization rate of available bandwidth, which means ECM can send more data out while not having a higher loss rate or delay, especially under a low FPS setting. ECM can be more helpful for those who have relatively limited networks to reach a more considerable balance between frame loss rate and video quality hence improving the quality of experience.


翻译:如果在视频上传者方面可以更准确地预测未来可用的带宽,则现场视频流流的经验是可以改进的。 因此,自然的问题就是如何在一个不断变化的网络中比较容易和精确地作出预测。 研究人员在文献中制定了许多预测算法,从中可以看出一个简单的算法,即自然感应(AM),根据这个算法,我们正在寻求一种基于Markov模型的称为“经验性条件方法(ECM)”的新方法,希望利用过去的数据获得更准确的预测,而不会丧失实用性。 通过模拟,我们发现我们的企业内容管理算法比常用的AM 1 更好地表现了比常用的AM AM 1, 与AM 相比损失减少了大约10%。 此外,企业内容管理也提高了现有带宽的使用率,这意味着企业内容管理可以发送更多的数据,而不会造成更高的损失率或延迟,特别是在低的FPS设置下。 企业内容管理对于网络相对有限的人来说,在框架损失率和视频质量之间达到更相当的平衡,因此改进了经验质量。

1
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
50+阅读 · 2021年8月8日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
123+阅读 · 2020年9月8日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年2月12日
Loss-guided Stability Selection
Arxiv
0+阅读 · 2022年2月10日
A Survey on Data Augmentation for Text Classification
Arxiv
3+阅读 · 2019年3月15日
Federated Learning for Mobile Keyboard Prediction
Arxiv
5+阅读 · 2018年11月8日
Arxiv
3+阅读 · 2015年11月29日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2021年8月8日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
123+阅读 · 2020年9月8日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2022年2月12日
Loss-guided Stability Selection
Arxiv
0+阅读 · 2022年2月10日
A Survey on Data Augmentation for Text Classification
Arxiv
3+阅读 · 2019年3月15日
Federated Learning for Mobile Keyboard Prediction
Arxiv
5+阅读 · 2018年11月8日
Arxiv
3+阅读 · 2015年11月29日
Top
微信扫码咨询专知VIP会员