We construct a new nonlinear finite volume (FV) scheme for highly anisotropic diffusion equations, that satisfies the discrete minimum-maximum principle. The construction relies on the linearized scheme satisfying less restrictive monotonicity conditions than those of an M-matrix, based on a weakly regular matrix splitting and using the Cartesian structure of the mesh (extension to quadrilateral meshes is also possible). The resulting scheme, obtained by expressing fluxes as nonlinear combinations of linear fluxes, has a larger stencil than other nonlinear positivity preserving or minimum-maximum principle preserving schemes. Its larger "linearized" stencil, closer to the actual complete stencil (that includes unknowns appearing in the convex combination coefficients), enables a faster convergence of the Picard iterations used to compute the solution of the scheme. Steady state dimensionless numerical tests as well as simulations of the highly anisotropic diffusion in electron radiation belts show a second order of convergence of the new scheme and confirm its computational efficiency compared to usual nonlinear FV schemes.
翻译:我们为高厌食性扩散方程式构建了新的非线性有限体积(FV)计划,这符合离子最小值原则。构建依据的线性方案满足比M-matrix低限制性的单体条件的线性方案,其基础是较弱的常规矩阵分割,并使用网状的碳酸盐结构(扩展至四边藻类也是可能的 ) 。由此形成的方案,通过以线性通量的非线性组合表达通量,比其他非线性现实性保护或最小原则保护计划要大得多。其更大的“线性”标准线性方案,更接近于实际的全线性标准(包括二次曲线组合系数中出现的未知数),使得用于计算方案溶液的皮卡值更快地趋同。稳态无维度数字测试以及电子辐射带中高度异性扩散的模拟,显示了新方案的第二顺序,并证实了其计算效率,与通常的非线性非线性FV计划相较近。